Model based deep learning method for focused ultrasound pathway scanning

Model based deep learning method for focused ultrasound pathway scanning
  • Dubinsky, T. J., Cuevas, C., Dighe, M. K., Kolokythas, O. & Hwang, J. H. High-intensity focused ultrasound: Current potential and oncologic applications. Am. J. Roentgenol. 190, 191 (2008).

    Article 

    Google Scholar 

  • Jang, H. J., Lee, J.-Y., Lee, D.-H., Kim, W.-H. & Hwang, J. H. Current and future clinical applications of high-intensity focused ultrasound (HIFU) for pancreatic cancer. Gut Liver 4, S57 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marinova, M., Rauch, M., Schild, H. & Strunk, H. Novel non-invasive treatment with high-intensity focused ultrasound (HIFU). Ultraschall Med. Eur. J. Ultrasound 37, 46–55 (2016).

    CAS 

    Google Scholar 

  • ter Haar, G. & Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 23, 89–104 (2007).

    Article 

    Google Scholar 

  • Fennessy, F. M. & Tempany, C. M. Mri-guided focused ultrasound surgery of uterine leiomyomas. Acad. Radiol. 12, 1158–1166 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Hindley, J. et al. Mri guidance of focused ultrasound therapy of uterine fibroids: Early results. Am. J. Roentgenol. 183, 1713–1719 (2004).

    Article 

    Google Scholar 

  • Illing, R. et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a western population. Br. J. Cancer 93, 890–895 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hesley, G. K. et al. Noninvasive treatment of uterine fibroids: Early mayo clinic experience with magnetic resonance imaging-guided focused ultrasound. Mayo Clin. Proc. 81, 936–942 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Napoli, A. et al. Mr-guided high-intensity focused ultrasound: Current status of an emerging technology. Cardiovasc. Intervent. Radiol. 36, 1190–1203 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Izadifar, Z., Izadifar, Z., Chapman, D. & Babyn, P. An introduction to high intensity focused ultrasound: Systematic review on principles, devices, and clinical applications. J. Clin. Med. 9, 460 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y.-F. High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2, 8 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni, Y., Mulier, S., Miao, Y., Michel, L. & Marchal, G. A review of the general aspects of radiofrequency ablation. Abdom. Imaging 30, 381–400 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Manthe, R. L., Foy, S. P., Krishnamurthy, N., Sharma, B. & Labhasetwar, V. Tumor ablation and nanotechnology. Mol. Pharm. 7, 1880–1898 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, F. et al. Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy. J. Urol. 170, 2237–2240 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Aus, G. Current status of HIFU and cryotherapy in prostate cancer—A review. Eur. Urol. 50, 927–934 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Klingler, H. C. et al. A novel approach to energy ablative therapy of small renal tumours: Laparoscopic high-intensity focused ultrasound. Eur. Urol. 53, 810–818 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Rewcastle, J. C. High intensity focused ultrasound for prostate cancer: A review of the scientific foundation, technology and clinical outcomes. Technol. Cancer Res. Treat. 5, 619–625 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Miklavčič, D. et al. Electrochemotherapy: Technological advancements for efficient electroporation-based treatment of internal tumors. Med. Biol. Eng. Comput. 50, 1213–1225 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brace, C. Thermal tumor ablation in clinical use. IEEE Pulse 2, 28–38 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khokhlova, T. D. et al. Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model. Proc. Natl. Acad. Sci. 111, 8161–8166 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suomi, V., Jaros, J., Treeby, B. & Cleveland, R. O. Full modeling of high-intensity focused ultrasound and thermal heating in the kidney using realistic patient models. IEEE Trans. Biomed. Eng. 65, 969–979 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Filonenko, E., ter Haar, G., Rivens, I. & Khokhlova, V. Prediction of ablation volume for different HIFU exposure regimes. In Proc. 3rd International Symposium on Therapeutic Ultrasound 22–25 (2003).

  • Wu, F. et al. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: Early Chinese clinical experience. Ultrasound Med. Biol. 30, 245–260 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Curiel, L. et al. Experimental evaluation of lesion prediction modelling in the presence of cavitation bubbles: Intended for high-intensity focused ultrasound prostate treatment. Med. Biol. Eng. Comput. 42, 44–54 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y., Kargl, S. G. & Hwang, J. H. Producing uniform lesion pattern in HIFU ablation. AIP Conf. Proc. 1113, 91–95 (2009).

    Article 
    ADS 

    Google Scholar 

  • Zhou, Y. Generation of uniform lesions in high intensity focused ultrasound ablation. Ultrasonics 53, 495–505 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Giannakou, M., Drakos, T., Cut, A. F. & Cut, C. D. Evaluation of Navigation Algorithms for Reducing the Near-Field Heating and the Treatment Time (2021).

  • Roemer, R. & Payne, A. Minimization of HIFU Dose Delivery Time (International Society of Therapeutic Ultrasound, 2007).

    Google Scholar 

  • Wu, F. et al. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med. Biol. 27, 1099–1106 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McDannold, N. J., Jolesz, F. A. & Hynynen, K. H. Determination of the optimal delay between sonications during focused ultrasound surgery in rabbits by using mr imaging to monitor thermal buildup in vivo. Radiology 211, 419–426 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McDannold, N. et al. Uterine leiomyomas: Mr imaging-based thermometry and thermal dosimetry during focused ultrasound thermal ablation. Radiology 240, 263 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Bachu, V. S., Kedda, J., Suk, I., Green, J. J. & Tyler, B. High-intensity focused ultrasound: A review of mechanisms and clinical applications. Ann. Biomed. Eng. 49, 1975–1991 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Payne, A., Vyas, U., Blankespoor, A., Christensen, D. & Roemer, R. Minimisation of HIFU pulse heating and interpulse cooling times. Int. J. Hyperth. 26, 198–208 (2010).

    Article 

    Google Scholar 

  • Fan, X. & Hynynen, K. Ultrasound surgery using multiple sonications-treatment time considerations. Ultrasound Med. Biol. 22, 471–482 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, H.-L., Lin, W.-L. & Chen, Y.-Y. A fast and conformal heating scheme for producing large thermal lesions using a 2d ultrasound phased array. Int. J. Hyperth. 23, 69–82 (2007).

    Article 

    Google Scholar 

  • Köhler, M. O. et al. Volumetric HIFU ablation under 3d guidance of rapid mri thermometry. Med. Phys. 36, 3521–3535 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Enholm, J. K. et al. Improved volumetric mr-HIFU ablation by robust binary feedback control. IEEE Trans. Biomed. Eng. 57, 103–113 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Mougenot, C., Salomir, R., Palussiere, J., Grenier, N. & Moonen, C. T. Automatic spatial and temporal temperature control for mr-guided focused ultrasound using fast 3d mr thermometry and multispiral trajectory of the focal point. Magn. Reson. Med. 52, 1005–1015 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Mougenot, C. et al. Three-dimensional spatial and temporal temperature control with mr thermometry-guided focused ultrasound (mrgHIFU). Magn. Reson. Med. 61, 603–614 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Malinen, M., Huttunen, T., Kaipio, J. P. & Hynynen, K. Scanning path optimization for ultrasound surgery. Phys. Med. Biol. 50, 3473 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Luo, H., Shen, G. & Chen, Y. Treatment planning of scanning time and path for phased high-intensity focused ultrasound surgery. In 2009 2nd International Conference on Biomedical Engineering and Informatics 1–4 (IEEE, 2009).

  • Zhou, Y., Kargl, S. G. & Hwang, J. H. The effect of the scanning pathway in high-intensity focused ultrasound therapy on lesion production. Ultrasound Med. Biol. 37, 1457–1468 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Coon, J., Payne, A. & Roemer, R. Hifu treatment time reduction in superficial tumours through focal zone path selection. Int. J. Hyperth. 27, 465–481 (2011).

    Article 

    Google Scholar 

  • Qian, K. et al. Uniform tissue lesion formation induced by high-intensity focused ultrasound along a spiral pathway. Ultrasonics 77, 38–46 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Lari, S., Han, S. W., Kim, J. U. & Kwon, H. J. Design of HIFU treatment plans using thermodynamic equilibrium algorithm. Algorithms 15, 399 (2022).

    Article 

    Google Scholar 

  • Cudova, M., Treeby, B. E. & Jaros, J. Design of HIFU treatment plans using an evolutionary strategy. In Proc. Genetic and Evolutionary Computation Conference Companion 1568–1575 (2018).

  • Liu, F. et al. Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation. J. Transl. Med. 8, 1–12 (2010).

    Article 

    Google Scholar 

  • Elawady, M., Sadek, I., Shabayek, A. E. R., Pons, G. & Ganau, S. Automatic nonlinear filtering and segmentation for breast ultrasound images. In International Conference on Image Analysis and Recognition 206–213 (Springer, 2016).

  • Soneson, J. E. A user-friendly software package for HIFU simulation. AIP Conf. Proc. 1113, 165–169 (2009).

    Article 
    ADS 

    Google Scholar 

  • Pennes, H. H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sapareto, S. A. & Dewey, W. C. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 10, 787–800 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhowmik, A., Repaka, R., Mishra, S. C. & Mitra, K. Thermal assessment of ablation limit of subsurface tumor during focused ultrasound and laser heating. J. Therm. Sci. Eng. Appl. 8, 1 (2015).

    CAS 

    Google Scholar 

  • Valencia, J. J. & Quested, P. Thermophysical properties. Model. Cast. Solidif. Process. 189, 1 (2001).

    Google Scholar 

  • Rahpeima, R., Soltani, M. & Kashkooli, F. M. Numerical study of microwave induced thermoacoustic imaging for initial detection of cancer of breast on anatomically realistic breast phantom. Comput. Methods Progr. Biomed. 196, 105606 (2020).

    Article 

    Google Scholar 

  • Soltani, M., Rahpeima, R. & Kashkooli, F. M. Breast cancer diagnosis with a microwave thermoacoustic imaging technique—A numerical approach. Med. Biol. Eng. Comput. 57, 1497–1513 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miaskowski, A. & Sawicki, B. Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model. IEEE Trans. Biomed. Eng. 60, 1806–1813 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Culjat, M. O., Goldenberg, D., Tewari, P. & Singh, R. S. A review of tissue substitutes for ultrasound imaging. Ultrasound Med. Biol. 36, 861–873 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Hopp, T., Ruiter, N. V. & Duric, N. Breast tissue characterization by sound speed: Correlation with mammograms using a 2d/3d image registration. In 2012 IEEE International Ultrasonics Symposium 1–4 (IEEE, 2012).

  • Hasgall, P. et al. It’is Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0. IT’IS (2018).

  • Rahpeima, R. & Lin, C.-A. Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom. PLoS ONE 17, e0274801 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zastrow, E. et al. Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Trans. Biomed. Eng. 55, 2792–2800 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G. D. & Barajas-Solano, D. Learning parameters and constitutive relationships with physics informed deep neural networks. Preprint at (2018).

  • Lu, L., Meng, X., Mao, Z. & Karniadakis, G. E. Deepxde: A deep learning library for solving differential equations. SIAM Rev. 63, 208–228 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Han, J. & Jentzen, A. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115, 8505–8510 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maslakowski, M. S. et al. The characterization and assembly of an efficient, cost effective focused ultrasound transducer. In 2020 IEEE 14th Dallas Circuits and Systems Conference (DCAS) 1–6 (IEEE, 2020).

  • Almekkawy, M. & Ebbini, E. S. The optimization of transcostal phased array refocusing using the semidefinite relaxation method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 318–328 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, S. The noninvasive treatment of 251 cases of advanced pancreatic cancer with focused ultrasound surgery. In Proc. 2nd International Symposium on Therapeutic Ultrasound, 2002 (2002).

  • Hynynen, K. et al. A scanned, focused, multiple transducer ultrasonic system for localized hyperthermia treatments. Int. J. Hyperth. 26, 1–11 (2010).

    Article 
    CAS 

    Google Scholar 

  • Daum, D. R. & Hynynen, K. A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1254–1268 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ebbini, E. S. & Cain, C. A. A spherical-section ultrasound phased array applicator for deep localized hyperthermia. IEEE Trans. Biomed. Eng. 38, 634–643 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McGough, R. J., Kessler, M., Ebbini, E. & Cain, C. Treatment planning for hyperthermia with ultrasound phased arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1074–1084 (1996).

    Article 

    Google Scholar 

  • Suramo, I., Päivänsalo, M. & Myllylä, V. Cranio-caudal movements of the liver, pancreas and kidneys in respiration. Acta Radiol. Diagn. 25, 129–131 (1984).

    Article 
    CAS 

    Google Scholar 

  • Goss, S. A., Frizzell, L. A., Kouzmanoff, J. T., Barich, J. M. & Yang, J. M. Sparse random ultrasound phased array for focal surgery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1111–1121 (1996).

    Article 

    Google Scholar 

  • Yao, H., Phukpattaranont, P. & Ebbini, E. S. Nonlinear imaging methods for characterization of HIFU-induced lesions. In Thermal Treatment of Tissue: Energy Delivery and Assessment II, Vol. 4954, 183–191 (SPIE, 2003).

  • Zhong, H., Wan, M.-X., Jiang, Y.-F. & Wang, S.-P. Monitoring imaging of lesions induced by high intensity focused ultrasound based on differential ultrasonic attenuation and integrated backscatter estimation. Ultrasound Med. Biol. 33, 82–94 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lizzi, F. L. et al. Radiation-force technique to monitor lesions during ultrasonic therapy. Ultrasound Med. Biol. 29, 1593–1605 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Owen, N. R., Bailey, M. R., Hossack, J. & Crum, L. A. A method to synchronize high-intensity, focused ultrasound with an arbitrary ultrasound imager. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 645–650 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Watkin, N., Ter Haar, G. & Rivens, I. The intensity dependence of the site of maximal energy deposition in focused ultrasound surgery. Ultrasound Med. Biol. 22, 483–491 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chavrier, F., Chapelon, J., Gelet, A. & Cathignol, D. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles. J. Acoust. Soc. Am. 108, 432–440 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gyongy, M. & Coussios, C.-C. Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Trans. Biomed. Eng. 57, 48–56 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Valvano, J. W., Cochran, J. & Diller, K. R. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int. J. Thermophys. 6, 301–311 (1985).

    Article 
    ADS 

    Google Scholar 

  • Bowman, H. F., Cravalho, E. G. & Woods, M. Theory, measurement, and application of thermal properties of biomaterials. Annu. Rev. Biophys. Bioeng. 4, 43–80 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sedelaar, J. M. et al. The application of three-dimensional contrast-enhanced ultrasound to measure volume of affected tissue after HIFU treatment for localized prostate cancer. Eur. Urol. 37, 559–568 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, F. et al. Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies. Ultrasound Med. Biol. 28, 535–542 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Ishikawa, T. et al. Functional and histological changes in rat femoral arteries by HIFU exposure. Ultrasound Med. Biol. 29, 1471–1477 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Chopra, R., Burtnyk, M., N’djin, W. A. & Bronskill, M. Mri-controlled transurethral ultrasound therapy for localised prostate cancer. Int. J. Hyperth. 26, 804–821 (2010).

    Article 

    Google Scholar 

  • Burtnyk, M., Chopra, R. & Bronskill, M. J. Quantitative analysis of 3-d conformal mri-guided transurethral ultrasound therapy of the prostate: Theoretical simulations. Int. J. Hyperth. 25, 116–131 (2009).

    Article 

    Google Scholar 

  • Khokhlova, T. D. et al. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound. J. Acoust. Soc. Am. 125, 2420–2431 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link