Versatile waste sorting in small batch and flexible manufacturing industries using deep learning techniques

Versatile waste sorting in small batch and flexible manufacturing industries using deep learning techniques
  • Wankhede, P. & Wanjari, M. Health issues and impact of waste on municipal waste handlers: A review. J. Pharm. Res. Int. 33, 577–581 (2021).

    Article 
    MATH 

    Google Scholar 

  • Sachs, J. D., Kroll, C., Lafortune, G., Fuller, G. & Woelm, F. Sustainable Development Report 2022. (Cambridge University Press, 2022).

  • Velenturf, A. P. M. & Purnell, P. Resource recovery from waste: Restoring the balance between resource scarcity and waste overload. Sustainability (2017).

    Article 
    MATH 

    Google Scholar 

  • Siqueira, M. U. et al. Brazilian agro-industrial wastes as potential textile and other raw materials: A sustainable approach. Mater. Circ. Econ. 4, 9 (2022).

    Article 
    MATH 

    Google Scholar 

  • Horton, P., Allwood, J., Cassell, P., Edwards, C. & Tautscher, A. Material demand reduction and closed-loop recycling automotive aluminium. MRS. Adv. 3, 1393–1398 (2018).

    Article 
    CAS 

    Google Scholar 

  • Madhusudanan, S. & Amirtham, L. R. Optimization of construction cost using industrial wastes in alternative building material for walls. Key. Eng. Mater. 692, 1–8 (2016).

    Article 
    MATH 

    Google Scholar 

  • Olives, R., Ribeiro, E. & Py, X. Materials for the energy transition: Importance of recycling. In MATEC Web of Conferences vol. 379 (EDP Sciences, 2023).

  • European Environment Agency. Waste generation in Europe. https://www.eea.europa.eu/en/analysis/indicators/waste-generation-and-decoupling-in-europe#footnote-UHIHGTKG.

  • Parker, D. et al. Remanufacturing market study. (2015).

  • Silva, A., Rosano, M., Stocker, L. & Gorissen, L. From waste to sustainable materials management: Three case studies of the transition journey. Waste Manag. 61, 547–557 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Agyabeng-Mensah, Y., Tang, L., Afum, E., Baah, C. & Dacosta, E. Organisational identity and circular economy: Are inter and intra organisational learning, lean management and zero waste practices worth pursuing?. Sustain. Prod. Consum. 28, 648–662 (2021).

    Article 

    Google Scholar 

  • Quicker, P., Consonni, S. & Grosso, M. The zero waste utopia and the role of waste-to-energy. Waste Manag. Res. 38, 481–484 (2020) (Preprint at).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Sarc, R. et al. Digitalisation and intelligent robotics in value chain of circular economy oriented waste management – A review. Waste Manag. 95, 476–492 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nižetić, S., Djilali, N., Papadopoulos, A. & Rodrigues, J. J. P. C. Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. J. Clean. Prod. 231, 565–591 (2019).

    Article 

    Google Scholar 

  • Lu, W. & Chen, J. Computer vision for solid waste sorting: A critical review of academic research. Waste Manag. 142, 29–43 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Da Rold, A., Furiato, M., Zaki, A. M. A., Carnevale, M. & Giberti, H. Deep learning-based robotic sorter for flexible production. Proced. Comput. Sci. 217, 1579–1588 (2023).

    Article 

    Google Scholar 

  • Chen, X., Huang, H., Liu, Y., Li, J. & Liu, M. Robot for automatic waste sorting on construction sites. Autom. Constr. 141, 104387 (2022).

    Article 
    MATH 

    Google Scholar 

  • Li, N. & Chen, Y. Municipal solid waste classification and real-time detection using deep learning methods. Urban Clim. 49, 101462 (2023).

    Article 

    Google Scholar 

  • Konstantinidis, F. K. et al. Multi-modal sorting in plastic and wood waste streams. Resour. Conserv. Recycl. 199, 107244 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Nežerka, V., Zbíral, T. & Trejbal, J. Machine-learning-assisted classification of construction and demolition waste fragments using computer vision: Convolution versus extraction of selected features. Expert. Syst. Appl. 238, 121568 (2024).

    Article 

    Google Scholar 

  • Liang, S. & Gu, Y. A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste Manag. 126, 247–257 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Gundupalli, S. P., Hait, S. & Thakur, A. Classification of metallic and non-metallic fractions of e-waste using thermal imaging-based technique. Process. Saf. Environ. Prot. 118, 32–39 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Gundupalli, S. P., Hait, S. & Thakur, A. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging. Waste Manag. 70, 13–21 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Neelakandan, S. et al. Metaheuristics with Deep Transfer Learning Enabled Detection and classification model for industrial waste management. Chemosphere 308, 136046 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, H., Cao, H., Zhou, Y., Gu, C. & Li, D. Hybrid deep learning model for accurate classification of solid waste in the society. Urban Clim. 49, 101485 (2023).

    Article 
    MATH 

    Google Scholar 

  • Jahanbakhshi, A., Momeny, M., Mahmoudi, M. & Radeva, P. Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks. Energy Rep. 7, 5248–5256 (2021).

    Article 

    Google Scholar 

  • Sterkens, W., Diaz-Romero, D., Goedemé, T., Dewulf, W. & Peeters, J. R. Detection and recognition of batteries on X-Ray images of waste electrical and electronic equipment using deep learning. Resour. Conserv. Recycl. 168, 105246 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Kirillov, A. et al. Segment anything. arXiv preprint arXiv:2304.02643 (2023).

  • He, K. et al. Masked autoencoders are scalable vision learners. In Proc.of the IEEE/CVF conference on computer vision and pattern recognition 16000–16009 (2022).

  • Dosovitskiy, A. et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

  • Tancik, M. et al. Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020).

    MATH 

    Google Scholar 

  • Cao, F. & Lu, X. Self-attention technology in image segmentation. In International Conference on Intelligent Traffic Systems and Smart City (ITSSC 2021) vol. 12165 271–276 (SPIE, 2022).

  • Zhao, X. et al. Fast segment anything. arXiv preprint arXiv:2306.12156 (2023).

  • Jocher, G. YOLOv5 by Ultralytics. 2020. URL (2023).

  • Bolya, D., Zhou, C., Xiao, F. & Lee, Y. J. Yolact: Real-time instance segmentation. In Proc. of the IEEE/CVF international conference on computer vision 9157–9166 (2019).

  • Zhang, C. et al. Faster segment anything: Towards lightweight sam for mobile applications. arXiv preprint arXiv:2306.14289 (2023).

  • Hinton, G. Distilling the Knowledge in a Neural Network. arXiv preprint arXiv:1503.02531 (2015).

  • Zhang, C. et al. Mobilesamv2: Faster segment anything to everything. arXiv preprint arXiv:2312.09579 (2023).

  • Xiong, Y. et al. Efficientsam: Leveraged masked image pretraining for efficient segment anything. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 16111–16121 (2024).

  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proc. of the IEEE conference on computer vision and pattern recognition 4510–4520 (2018).

  • Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

  • Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proc. of the IEEE conference on computer vision and pattern recognition 4700–4708 (2017).

  • Iandola, F. N. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).

  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proc. of the IEEE conference on computer vision and pattern recognition 2818–2826 (2016).

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. of the IEEE conference on computer vision and pattern recognition 770–778 (2016).

  • Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

    Article 
    MathSciNet 

    Google Scholar 

  • Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

  • Bashkirova, D. et al. ZeroWaste dataset: towards deformable object segmentation in cluttered scenes. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 21147–21157 (2022).

  • University, P. waste conveyor Dataset. Roboflow Universe Preprint at (2023).

  • Yudin, D. et al. Hierarchical waste detection with weakly supervised segmentation in images from recycling plants. Eng. Appl. Artif. Intell. 128, 107542 (2024).

    Article 
    MATH 

    Google Scholar 

  • Longo, E. et al. Take the trash out… to the edge. Creating a Smart Waste Bin based on 5G Multi-access Edge Computing. In Proc. of the Conference on Information Technology for Social Good 55–60 (2021).

  • Isaac Ritharson. Waste Materials classification Data. Preprint at (2023).

  • Cheng, Y. et al. Flow: A dataset and benchmark for floating waste detection in inland waters. In Proc. of the IEEE/CVF International Conference on Computer Vision 10953–10962 (2021).

  • Roboflow. floating waste dataset FINAL COLOR Image Dataset. https://universe.roboflow.com/bannari-mman-institute-of-technology/floating-waste-dataset-final-color/dataset/1.

  • Khanam, R. & Hussain, M. Yolov11: An overview of the key architectural enhancements. arXiv preprint arXiv:2410.17725 (2024).

  • He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. In Proc. of the IEEE international conference on computer vision 2961–2969 (2017).

  • Nišić, D., Lukić, B., Gordić, Z., Pantelić, U. & Vukićević, A. E-waste management in serbia, focusing on the possibility of applying automated separation using robots. Appl. Sci. 14, 5685 (2024).

    Article 

    Google Scholar 

  • link