Versatile waste sorting in small batch and flexible manufacturing industries using deep learning techniques

Wankhede, P. & Wanjari, M. Health issues and impact of waste on municipal waste handlers: A review. J. Pharm. Res. Int. 33, 577–581 (2021).
Google Scholar
Sachs, J. D., Kroll, C., Lafortune, G., Fuller, G. & Woelm, F. Sustainable Development Report 2022. (Cambridge University Press, 2022).
Velenturf, A. P. M. & Purnell, P. Resource recovery from waste: Restoring the balance between resource scarcity and waste overload. Sustainability (2017).
Google Scholar
Siqueira, M. U. et al. Brazilian agro-industrial wastes as potential textile and other raw materials: A sustainable approach. Mater. Circ. Econ. 4, 9 (2022).
Google Scholar
Horton, P., Allwood, J., Cassell, P., Edwards, C. & Tautscher, A. Material demand reduction and closed-loop recycling automotive aluminium. MRS. Adv. 3, 1393–1398 (2018).
Google Scholar
Madhusudanan, S. & Amirtham, L. R. Optimization of construction cost using industrial wastes in alternative building material for walls. Key. Eng. Mater. 692, 1–8 (2016).
Google Scholar
Olives, R., Ribeiro, E. & Py, X. Materials for the energy transition: Importance of recycling. In MATEC Web of Conferences vol. 379 (EDP Sciences, 2023).
European Environment Agency. Waste generation in Europe. https://www.eea.europa.eu/en/analysis/indicators/waste-generation-and-decoupling-in-europe#footnote-UHIHGTKG.
Parker, D. et al. Remanufacturing market study. (2015).
Silva, A., Rosano, M., Stocker, L. & Gorissen, L. From waste to sustainable materials management: Three case studies of the transition journey. Waste Manag. 61, 547–557 (2017).
Google Scholar
Agyabeng-Mensah, Y., Tang, L., Afum, E., Baah, C. & Dacosta, E. Organisational identity and circular economy: Are inter and intra organisational learning, lean management and zero waste practices worth pursuing?. Sustain. Prod. Consum. 28, 648–662 (2021).
Google Scholar
Quicker, P., Consonni, S. & Grosso, M. The zero waste utopia and the role of waste-to-energy. Waste Manag. Res. 38, 481–484 (2020) (Preprint at).
Google Scholar
Sarc, R. et al. Digitalisation and intelligent robotics in value chain of circular economy oriented waste management – A review. Waste Manag. 95, 476–492 (2019).
Google Scholar
Nižetić, S., Djilali, N., Papadopoulos, A. & Rodrigues, J. J. P. C. Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. J. Clean. Prod. 231, 565–591 (2019).
Google Scholar
Lu, W. & Chen, J. Computer vision for solid waste sorting: A critical review of academic research. Waste Manag. 142, 29–43 (2022).
Google Scholar
Da Rold, A., Furiato, M., Zaki, A. M. A., Carnevale, M. & Giberti, H. Deep learning-based robotic sorter for flexible production. Proced. Comput. Sci. 217, 1579–1588 (2023).
Google Scholar
Chen, X., Huang, H., Liu, Y., Li, J. & Liu, M. Robot for automatic waste sorting on construction sites. Autom. Constr. 141, 104387 (2022).
Google Scholar
Li, N. & Chen, Y. Municipal solid waste classification and real-time detection using deep learning methods. Urban Clim. 49, 101462 (2023).
Google Scholar
Konstantinidis, F. K. et al. Multi-modal sorting in plastic and wood waste streams. Resour. Conserv. Recycl. 199, 107244 (2023).
Google Scholar
Nežerka, V., Zbíral, T. & Trejbal, J. Machine-learning-assisted classification of construction and demolition waste fragments using computer vision: Convolution versus extraction of selected features. Expert. Syst. Appl. 238, 121568 (2024).
Google Scholar
Liang, S. & Gu, Y. A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste Manag. 126, 247–257 (2021).
Google Scholar
Gundupalli, S. P., Hait, S. & Thakur, A. Classification of metallic and non-metallic fractions of e-waste using thermal imaging-based technique. Process. Saf. Environ. Prot. 118, 32–39 (2018).
Google Scholar
Gundupalli, S. P., Hait, S. & Thakur, A. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging. Waste Manag. 70, 13–21 (2017).
Google Scholar
Neelakandan, S. et al. Metaheuristics with Deep Transfer Learning Enabled Detection and classification model for industrial waste management. Chemosphere 308, 136046 (2022).
Google Scholar
Zhang, H., Cao, H., Zhou, Y., Gu, C. & Li, D. Hybrid deep learning model for accurate classification of solid waste in the society. Urban Clim. 49, 101485 (2023).
Google Scholar
Jahanbakhshi, A., Momeny, M., Mahmoudi, M. & Radeva, P. Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks. Energy Rep. 7, 5248–5256 (2021).
Google Scholar
Sterkens, W., Diaz-Romero, D., Goedemé, T., Dewulf, W. & Peeters, J. R. Detection and recognition of batteries on X-Ray images of waste electrical and electronic equipment using deep learning. Resour. Conserv. Recycl. 168, 105246 (2021).
Google Scholar
Kirillov, A. et al. Segment anything. arXiv preprint arXiv:2304.02643 (2023).
He, K. et al. Masked autoencoders are scalable vision learners. In Proc.of the IEEE/CVF conference on computer vision and pattern recognition 16000–16009 (2022).
Dosovitskiy, A. et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
Tancik, M. et al. Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020).
Google Scholar
Cao, F. & Lu, X. Self-attention technology in image segmentation. In International Conference on Intelligent Traffic Systems and Smart City (ITSSC 2021) vol. 12165 271–276 (SPIE, 2022).
Zhao, X. et al. Fast segment anything. arXiv preprint arXiv:2306.12156 (2023).
Jocher, G. YOLOv5 by Ultralytics. 2020. URL (2023).
Bolya, D., Zhou, C., Xiao, F. & Lee, Y. J. Yolact: Real-time instance segmentation. In Proc. of the IEEE/CVF international conference on computer vision 9157–9166 (2019).
Zhang, C. et al. Faster segment anything: Towards lightweight sam for mobile applications. arXiv preprint arXiv:2306.14289 (2023).
Hinton, G. Distilling the Knowledge in a Neural Network. arXiv preprint arXiv:1503.02531 (2015).
Zhang, C. et al. Mobilesamv2: Faster segment anything to everything. arXiv preprint arXiv:2312.09579 (2023).
Xiong, Y. et al. Efficientsam: Leveraged masked image pretraining for efficient segment anything. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 16111–16121 (2024).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proc. of the IEEE conference on computer vision and pattern recognition 4510–4520 (2018).
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proc. of the IEEE conference on computer vision and pattern recognition 4700–4708 (2017).
Iandola, F. N. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proc. of the IEEE conference on computer vision and pattern recognition 2818–2826 (2016).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. of the IEEE conference on computer vision and pattern recognition 770–778 (2016).
Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).
Google Scholar
Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
Bashkirova, D. et al. ZeroWaste dataset: towards deformable object segmentation in cluttered scenes. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 21147–21157 (2022).
University, P. waste conveyor Dataset. Roboflow Universe Preprint at (2023).
Yudin, D. et al. Hierarchical waste detection with weakly supervised segmentation in images from recycling plants. Eng. Appl. Artif. Intell. 128, 107542 (2024).
Google Scholar
Longo, E. et al. Take the trash out… to the edge. Creating a Smart Waste Bin based on 5G Multi-access Edge Computing. In Proc. of the Conference on Information Technology for Social Good 55–60 (2021).
Isaac Ritharson. Waste Materials classification Data. Preprint at (2023).
Cheng, Y. et al. Flow: A dataset and benchmark for floating waste detection in inland waters. In Proc. of the IEEE/CVF International Conference on Computer Vision 10953–10962 (2021).
Roboflow. floating waste dataset FINAL COLOR Image Dataset. https://universe.roboflow.com/bannari-mman-institute-of-technology/floating-waste-dataset-final-color/dataset/1.
Khanam, R. & Hussain, M. Yolov11: An overview of the key architectural enhancements. arXiv preprint arXiv:2410.17725 (2024).
He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. In Proc. of the IEEE international conference on computer vision 2961–2969 (2017).
Nišić, D., Lukić, B., Gordić, Z., Pantelić, U. & Vukićević, A. E-waste management in serbia, focusing on the possibility of applying automated separation using robots. Appl. Sci. 14, 5685 (2024).
Google Scholar
link