Predicting preterm birth using machine learning methods

Rubarth, L. B. & Quinn, J. Respiratory development and respiratory distress syndrome. Neonatal Netw. 34, 231–238 (2015).
Google Scholar
Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–264 (2011).
Google Scholar
Volpe, J. J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50, 553–562 (2001).
Google Scholar
Hartnett, M. E. Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 122, 200–210 (2015).
Google Scholar
Hellström, A., Smith, L. E. & Dammann, O. Retinopathy of prematurity. Lancet 382, 1445–1457 (2013).
Google Scholar
McCrea, H. J. & Ment, L. R. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin. Perinatol. 35, 777–792 (2008).
Google Scholar
Owens, R. Intraventricular hemorrhage in the premature neonate. Neonatal Netw. 24, 55–71 (2005).
Google Scholar
Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).
Google Scholar
Koullali, B., Oudijk, M., Nijman, T., Mol, B. & Pajkrt, E. Risk assessment and management to prevent preterm birth. Semin. Fetal Neonatal Med. 21, 80–88 (2016).
Google Scholar
Shivkumar, P. V., Priyadarshani, P. & Choksi, N. Preterm labor. Labour Room Emergencies 33–38 (2020).
Delnord, M., Blondel, B., Prunet, C. & Zeitlin, J. Are risk factors for preterm and early-term live singleton birth the same? a population-based study in france. BMJ Open 8, e018745 (2018).
Google Scholar
Grantz, K. L. et al. Differences in risk factors for recurrent versus incident preterm delivery. Am. J. Epidemiol. 182, 157–167 (2015).
Google Scholar
Kluwgant, D., Wainstock, T., Sheiner, E. & Pariente, G. Preterm delivery; who is at risk?. J. Clin. Med. 10, 2279 (2021).
Google Scholar
Porter, T. F., Fraser, A. M., Hunter, C. Y., Ward, R. H. & Varner, M. W. The risk of preterm birth across generations. Obstetr. Gynecol. 90, 63–67 (1997).
Google Scholar
Winkvist, A., Mogren, I. & Högberg, U. Familial patterns in birth characteristics: Impact on individual and population risks. Int. J. Epidemiol. 27, 248–254 (1998).
Google Scholar
Goldenberg, R. L., Hauth, J. C. & Andrews, W. W. Intrauterine infection and preterm delivery. N. Engl. J. Med. 342, 1500–1507 (2000).
Google Scholar
Surendiran, R., Aarthi, R., Thangamani, M., Sugavanam, S. & Sarumathy, R. A systematic review using machine learning algorithms for predicting preterm birth. Int. J. Eng. Trends Technol. 70, 46–59 (2022).
Google Scholar
Włodarczyk, T. et al. Machine learning methods for preterm birth prediction: a review. Electronics 10, 586 (2021).
Google Scholar
Abraham, A. et al. Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth. BMC Med. 20, 333 (2022).
Google Scholar
Yang, Q. et al. Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: a systematic review. Acta Obstet. Gynecol. Scand. 102, 7–14 (2023).
Google Scholar
Sari, A., Lakulu, M. M. & Panessai, I. Y. Predicting premature birth during pregnancy using machine learning: A systematic review. Int. J. Intell. Syst. Appl. Eng. 12, 452–463 (2024).
Rocha, T. A. H. et al. Data-driven risk stratification for preterm birth in brazil: a population-based study to develop of a machine learning risk assessment approach. Lancet Region. Health Am.3 (2021).
Yu, Q.-Y., Lin, Y., Zhou, Y.-R., Yang, X.-J. & Hemelaar, J. Predicting risk of preterm birth in singleton pregnancies using machine learning algorithms. Front. Big Data 7, 1291196 (2024).
Google Scholar
Zhang, Y. et al. Establishment of a model for predicting preterm birth based on the machine learning algorithm. BMC Pregnancy Childbirth 23, 779 (2023).
Google Scholar
Cibulskis, C. C., Maheshwari, A., Rao, R. & Mathur, A. M. Anemia of prematurity: how low is too low?. J. Perinatol. 41, 1244–1257 (2021).
Google Scholar
Volpe, J. J. The encephalopathy of prematurity-brain injury and impaired brain development inextricably intertwined. Semin. Pediatr. Neurol. 16, 167–178 (2009).
Google Scholar
Rigatti, S. J. Random forest. J. Insurance Med. 47, 31–39 (2017).
Google Scholar
Guido, R., Ferrisi, S., Lofaro, D. & Conforti, D. An overview on the advancements of support vector machine models in healthcare applications: A review. Information 15, 235 (2024).
Google Scholar
Koullali, B. et al. The association between parity and spontaneous preterm birth: a population based study. BMC Pregnancy Childbirth 20, 1–8 (2020).
Google Scholar
Szyszka, M. et al. Association between parity and preterm birth-retrospective analysis from a single center in Poland. Healthcare 11, 1763 (2023).
Google Scholar
Ytterberg, K. et al. Exploring the association of parity and its interaction with history of preterm delivery on gestational duration. Ann. Epidemiol. 87, 60–68 (2023).
Google Scholar
Pitiphat, W. et al. Plasma c-reactive protein in early pregnancy and preterm delivery. Am. J. Epidemiol. 162, 1108–1113 (2005).
Google Scholar
Sorokin, Y. et al. Maternal serum interleukin-6, c-reactive protein, and matrix metalloproteinase-9 concentrations as risk factors for preterm birth< 32 weeks and adverse neonatal outcomes. Am. J. Perinatol. 27, 631–640 (2010).
Google Scholar
Ferguson, K. K., McElrath, T. F., Chen, Y.-H., Mukherjee, B. & Meeker, J. D. Longitudinal profiling of inflammatory cytokines and c-reactive protein during uncomplicated and preterm pregnancy. Am. J. Reprod. Immunol. 72, 326–336 (2014).
Google Scholar
Khezri, R., Salarilak, S. & Jahanian, S. The association between maternal anemia during pregnancy and preterm birth. Clin. Nutr. ESPEN 56, 13–17 (2023).
Google Scholar
Stanley, A. Y., Wallace, J. B., Hernandez, A. M. & Spell, J. L. Anemia in pregnancy: Screening and clinical management strategies. MCN Am. J. Matern./Child Nurs. 47, 25–32 (2022).
Google Scholar
Rahmati, S., Azami, M., Badfar, G., Parizad, N. & Sayehmiri, K. The relationship between maternal anemia during pregnancy with preterm birth: a systematic review and meta-analysis. J. Matern.-Fetal Neonatal Med. 33, 2679–2689 (2020).
Google Scholar
Gezer, C. et al. Identification of preterm birth in women with threatened preterm labour between 34 and 37 weeks of gestation. J. Obstet. Gynaecol. 38, 652–657 (2018).
Google Scholar
Zhang, Y., Zhen, M., Zeng, Y., Lao, L. & Ai, W. Complete blood count during the first trimester predicting spontaneous preterm birth. Eur. Rev. Med. Pharmacol. Sci. 26, 5489–5495 (2022).
Google Scholar
Okui, T. Analysis of an association between preterm birth and parental educational level in Japan using national data. Children 10, 342 (2023).
Google Scholar
Granés, L., Torà-Rocamora, I., Palacio, M., De la Torre, L. & Llupià, A. Maternal educational level and preterm birth: Exploring inequalities in a hospital-based cohort study. PLoS ONE 18, e0283901 (2023).
Google Scholar
link