Predicting preterm birth using machine learning methods

Predicting preterm birth using machine learning methods
  • Rubarth, L. B. & Quinn, J. Respiratory development and respiratory distress syndrome. Neonatal Netw. 34, 231–238 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–264 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Volpe, J. J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50, 553–562 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hartnett, M. E. Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 122, 200–210 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Hellström, A., Smith, L. E. & Dammann, O. Retinopathy of prematurity. Lancet 382, 1445–1457 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • McCrea, H. J. & Ment, L. R. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin. Perinatol. 35, 777–792 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Owens, R. Intraventricular hemorrhage in the premature neonate. Neonatal Netw. 24, 55–71 (2005).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Koullali, B., Oudijk, M., Nijman, T., Mol, B. & Pajkrt, E. Risk assessment and management to prevent preterm birth. Semin. Fetal Neonatal Med. 21, 80–88 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shivkumar, P. V., Priyadarshani, P. & Choksi, N. Preterm labor. Labour Room Emergencies 33–38 (2020).

  • Delnord, M., Blondel, B., Prunet, C. & Zeitlin, J. Are risk factors for preterm and early-term live singleton birth the same? a population-based study in france. BMJ Open 8, e018745 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grantz, K. L. et al. Differences in risk factors for recurrent versus incident preterm delivery. Am. J. Epidemiol. 182, 157–167 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kluwgant, D., Wainstock, T., Sheiner, E. & Pariente, G. Preterm delivery; who is at risk?. J. Clin. Med. 10, 2279 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porter, T. F., Fraser, A. M., Hunter, C. Y., Ward, R. H. & Varner, M. W. The risk of preterm birth across generations. Obstetr. Gynecol. 90, 63–67 (1997).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Winkvist, A., Mogren, I. & Högberg, U. Familial patterns in birth characteristics: Impact on individual and population risks. Int. J. Epidemiol. 27, 248–254 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Goldenberg, R. L., Hauth, J. C. & Andrews, W. W. Intrauterine infection and preterm delivery. N. Engl. J. Med. 342, 1500–1507 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Surendiran, R., Aarthi, R., Thangamani, M., Sugavanam, S. & Sarumathy, R. A systematic review using machine learning algorithms for predicting preterm birth. Int. J. Eng. Trends Technol. 70, 46–59 (2022).

    Article 

    Google Scholar 

  • Włodarczyk, T. et al. Machine learning methods for preterm birth prediction: a review. Electronics 10, 586 (2021).

    Article 
    MATH 

    Google Scholar 

  • Abraham, A. et al. Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth. BMC Med. 20, 333 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yang, Q. et al. Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: a systematic review. Acta Obstet. Gynecol. Scand. 102, 7–14 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Sari, A., Lakulu, M. M. & Panessai, I. Y. Predicting premature birth during pregnancy using machine learning: A systematic review. Int. J. Intell. Syst. Appl. Eng. 12, 452–463 (2024).

    Google Scholar 

  • Rocha, T. A. H. et al. Data-driven risk stratification for preterm birth in brazil: a population-based study to develop of a machine learning risk assessment approach. Lancet Region. Health Am.3 (2021).

  • Yu, Q.-Y., Lin, Y., Zhou, Y.-R., Yang, X.-J. & Hemelaar, J. Predicting risk of preterm birth in singleton pregnancies using machine learning algorithms. Front. Big Data 7, 1291196 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Establishment of a model for predicting preterm birth based on the machine learning algorithm. BMC Pregnancy Childbirth 23, 779 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Cibulskis, C. C., Maheshwari, A., Rao, R. & Mathur, A. M. Anemia of prematurity: how low is too low?. J. Perinatol. 41, 1244–1257 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Volpe, J. J. The encephalopathy of prematurity-brain injury and impaired brain development inextricably intertwined. Semin. Pediatr. Neurol. 16, 167–178 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Rigatti, S. J. Random forest. J. Insurance Med. 47, 31–39 (2017).

    Article 
    MATH 

    Google Scholar 

  • Guido, R., Ferrisi, S., Lofaro, D. & Conforti, D. An overview on the advancements of support vector machine models in healthcare applications: A review. Information 15, 235 (2024).

    Article 
    MATH 

    Google Scholar 

  • Koullali, B. et al. The association between parity and spontaneous preterm birth: a population based study. BMC Pregnancy Childbirth 20, 1–8 (2020).

    Article 

    Google Scholar 

  • Szyszka, M. et al. Association between parity and preterm birth-retrospective analysis from a single center in Poland. Healthcare 11, 1763 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ytterberg, K. et al. Exploring the association of parity and its interaction with history of preterm delivery on gestational duration. Ann. Epidemiol. 87, 60–68 (2023).

    Article 
    MATH 

    Google Scholar 

  • Pitiphat, W. et al. Plasma c-reactive protein in early pregnancy and preterm delivery. Am. J. Epidemiol. 162, 1108–1113 (2005).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Sorokin, Y. et al. Maternal serum interleukin-6, c-reactive protein, and matrix metalloproteinase-9 concentrations as risk factors for preterm birth< 32 weeks and adverse neonatal outcomes. Am. J. Perinatol. 27, 631–640 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferguson, K. K., McElrath, T. F., Chen, Y.-H., Mukherjee, B. & Meeker, J. D. Longitudinal profiling of inflammatory cytokines and c-reactive protein during uncomplicated and preterm pregnancy. Am. J. Reprod. Immunol. 72, 326–336 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Khezri, R., Salarilak, S. & Jahanian, S. The association between maternal anemia during pregnancy and preterm birth. Clin. Nutr. ESPEN 56, 13–17 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Stanley, A. Y., Wallace, J. B., Hernandez, A. M. & Spell, J. L. Anemia in pregnancy: Screening and clinical management strategies. MCN Am. J. Matern./Child Nurs. 47, 25–32 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Rahmati, S., Azami, M., Badfar, G., Parizad, N. & Sayehmiri, K. The relationship between maternal anemia during pregnancy with preterm birth: a systematic review and meta-analysis. J. Matern.-Fetal Neonatal Med. 33, 2679–2689 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gezer, C. et al. Identification of preterm birth in women with threatened preterm labour between 34 and 37 weeks of gestation. J. Obstet. Gynaecol. 38, 652–657 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, Y., Zhen, M., Zeng, Y., Lao, L. & Ai, W. Complete blood count during the first trimester predicting spontaneous preterm birth. Eur. Rev. Med. Pharmacol. Sci. 26, 5489–5495 (2022).

    PubMed 
    MATH 

    Google Scholar 

  • Okui, T. Analysis of an association between preterm birth and parental educational level in Japan using national data. Children 10, 342 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Granés, L., Torà-Rocamora, I., Palacio, M., De la Torre, L. & Llupià, A. Maternal educational level and preterm birth: Exploring inequalities in a hospital-based cohort study. PLoS ONE 18, e0283901 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link