Integrating graph and reinforcement learning for vaccination strategies in complex networks

Integrating graph and reinforcement learning for vaccination strategies in complex networks
  • Who coronavirus (covid-19) dashboard. (Accessed July 14, 2023). https://covid19.who.int/.

  • Kang, Q. et al. Machine learning-aided causal inference framework for environmental data analysis: a covid-19 case study. Environmental Science & Technology 55, 13400–13410 (2021).

    CAS 

    Google Scholar 

  • Padma, T. Covid vaccines to reach poorest countries in 2023 – despite recent pledges. Nature 595, 342–343 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, Z., Chen, Y., Tricco, T. S., Li, C. & Hu, T. Practical strategy of acquaintance immunization without contact tracing. In Proceedings of the 13th IEEE International Conference on Social Computing and Networking (SocialCom), 845–851 (2020).

  • Dong, Z., Chen, Y., Tricco, T. S., Li, C. & Hu, T. Hunting for vital nodes in complex networks using local information. Scientific Reports 11, 9190 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lü, L. et al. Vital nodes identification in complex networks. Physics Reports 650, 1–63 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Lalou, M., Tahraoui, M. A. & Kheddouci, H. The critical node detection problem in networks: A survey. Computer Science Review 28, 92–117 (2018).

    Article 
    MathSciNet 

    Google Scholar 

  • Kempe, D., Kleinberg, J. & Tardos, É. Influential nodes in a diffusion model for social networks. In Automata, Languages and Programming: 32nd International Colloquium (ICALP), 1127–1138 (2005).

  • Freeman, L. C. Centrality in social networks conceptual clarification. Social Networks 1, 215–239 (1978).

    Article 

    Google Scholar 

  • Sabidussi, G. The centrality index of a graph. Psychometrika 31, 581–603 (1966).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Brin, S. & Page, L. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998).

    Article 

    Google Scholar 

  • Kitsak, M. et al. Identification of influential spreaders in complex networks. Nature Physics 6, 888–893 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C. & Zhou, T. Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications 391, 1777–1787 (2012).

    Article 
    ADS 

    Google Scholar 

  • Zhang, J.-X., Chen, D.-B., Dong, Q. & Zhao, Z.-D. Identifying a set of influential spreaders in complex networks. Scientific Reports 6, 27823 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, D.-B., Gao, H., Lü, L. & Zhou, T. Identifying influential nodes in large-scale directed networks: the role of clustering. PloS One 8, e77455 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lü, L., Zhang, Y.-C., Yeung, C. H. & Zhou, T. Leaders in social networks, the delicious case. PloS One 6, e21202 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weng, J., Lim, E.-P., Jiang, J. & He, Q. Twitterrank: finding topic-sensitive influential twitterers. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, 261–270 (2010).

  • Kitsak, M. et al. Identification of influential spreaders in complex networks. Nature Physics 6, 888–893 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, Z., Zhao, Y., Xi, J. & Du, C. Fast ranking influential nodes in complex networks using a k-shell iteration factor. Physica A: Statistical Mechanics and its Applications 461, 171–181 (2016).

    Article 
    ADS 

    Google Scholar 

  • Wan, Y.-P., Wang, J., Zhang, D.-G., Dong, H.-Y. & Ren, Q.-H. Ranking the spreading capability of nodes in complex networks based on link significance. Physica A: Statistical Mechanics and its Applications 503, 929–937 (2018).

    Article 
    ADS 

    Google Scholar 

  • Yang, F. et al. Identifying the most influential spreaders in complex networks by an extended local k-shell sum. International Journal of Modern Physics C 28, 1750014 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Ma, L.-L., Ma, C., Zhang, H.-F. & Wang, B.-H. Identifying influential spreaders in complex networks based on gravity formula. Physica A: Statistical Mechanics and its Applications 451, 205–212 (2016).

    Article 
    ADS 

    Google Scholar 

  • Chen, W., Wang, Y. & Yang, S. Efficient influence maximization in social networks. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 199–208 (2009).

  • Domingos, P. & Richardson, M. Mining the network value of customers. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 57–66 (2001).

  • He, J.-L., Fu, Y. & Chen, D.-B. A novel top-k strategy for influence maximization in complex networks with community structure. PloS One 10, e0145283 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Morone, F. & Makse, H. A. Influence maximization in complex networks through optimal percolation. Nature 524, 65–68 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, G., Jia, P., Huang, C., Zhou, A. & Fang, Y. A machine learning based framework for identifying influential nodes in complex networks. IEEE Access 8, 65462–65471 (2020).

    Article 

    Google Scholar 

  • Yu, E.-Y., Fu, Y., Chen, X., Xie, M. & Chen, D.-B. Identifying critical nodes in temporal networks by network embedding. Scientific Reports 10, 12494 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khajehnejad, M. et al. Adversarial graph embeddings for fair influence maximization over social networks. arXiv:2005.04074 (2020).

  • Wei, H. et al. Identifying influential nodes based on network representation learning in complex networks. PloS one 13, e0200091 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khalil, E., Dai, H., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial optimization algorithms over graphs. Advances in Neural Information Processing Systems 30 (2017).

  • Dong, Z., Chen, Y., Tricco, T. S., Li, C. & Hu, T. Ego-aware graph neural network. IEEE Transactions on Network Science and Engineering 11, 1756–1770 (2024).

    Article 

    Google Scholar 

  • Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International Conference on Learning Representations (ICLR) (2016).

  • Watkins, C. J. & Dayan, P. Q-learning. Machine Learning 8, 279–292 (1992).

    Article 

    Google Scholar 

  • Sutton, R. S. Learning to predict by the methods of temporal differences. Machine Learning 3, 9–44 (1988).

    Article 

    Google Scholar 

  • Sutton, R. S. Reinforcement learning: an introduction. A Bradford Book (2018).

  • Grassia, M., De Domenico, M. & Mangioni, G. Machine learning dismantling and early-warning signals of disintegration in complex systems. Nature Communications 12, 5190 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren, X.-L., Gleinig, N., Helbing, D. & Antulov-Fantulin, N. Generalized network dismantling. Proceedings of the National Academy of Sciences 116, 6554–6559 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Clusella, P., Grassberger, P., Pérez-Reche, F. J. & Politi, A. Immunization and targeted destruction of networks using explosive percolation. Physical Review Letters 117, 208301 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Chen, Y. & Dong, Z. Disnet: A general framework for dissolving networks. In Proceedings of International Wireless Communications and Mobile Computing (IWCMC), 1890–1895 (2021).

  • Barabási, A.-L. Network Science (Cambridge University Press, 2016).

  • Kiss, I. Z., Miller, J. C., Simon, P. L. et al. Mathematics of epidemics on networks. Cham: Springer 598 (2017).

  • Miller, J. C. & Ting, T. EoN (Epidemics on Networks): a fast, flexible python package for simulation, analytic approximation, and analysis of epidemics on networks. arXiv:2001.02436 (2020).

  • Tang, Y., Shi, Y. & Xiao, X. Influence maximization in near-linear time: A martingale approach. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 1539–1554 (2015).

  • Panagopoulos, G., Tziortziotis, N., Vazirgiannis, M. & Malliaros, F. Maximizing influence with graph neural networks. In Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, 237–244 (2023).

  • Fan, C., Zeng, L., Sun, Y. & Liu, Y.-Y. Finding key players in complex networks through deep reinforcement learning. Nature Machine Intelligence 2, 317–324 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Integrating dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning. Transportation Research Part E: Logistics and Transportation Review 142, 102070 (2020).

    Article 

    Google Scholar 

  • Sha, Z., Chen, Y. & Hu, T. Nspa: characterizing the disease association of multiple genetic interactions at single-subject resolution. Bioinformatics Advances 3, vbad010 (2023).

  • Rolf, B. et al. A review on reinforcement learning algorithms and applications in supply chain management. International Journal of Production Research 61, 7151–7179 (2023).

    Article 

    Google Scholar 

  • ERDdS, P. & R &wi, A. On random graphs I. Publ. Math. Debrecen 6, 18 (1959).

  • Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkx. In Proceedings of the 7th Python in Science Conference, 11–15 (2008).

  • Sah, P., Singh, L. O., Clauset, A. & Bansal, S. Exploring community structure in biological networks with random graphs. BMC Bioinformatics 15, 1–14 (2014).

    Article 

    Google Scholar 

  • Newman, M. E. Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74, 036104 (2006).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Van Dijk, R. E. et al. Cooperative investment in public goods is kin directed in communal nests of social birds. Ecology Letters 17, 1141–1148 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, S., Abbasi, B., Shah, S., Telfer, S. & Begon, M. Spatial analyses of wildlife contact networks. Journal of the Royal Society Interface 12, 20141004 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sah, P. et al. Inferring social structure and its drivers from refuge use in the desert tortoise, a relatively solitary species. Behavioral Ecology and Sociobiology 70, 1277–1289 (2016).

    Article 

    Google Scholar 

  • Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J. & Faloutsos, C. Epidemic thresholds in real networks. ACM Transactions on Information and System Security 10, 1–26 (2008).

    Article 

    Google Scholar 

  • Beineke, L. W., Oellermann, O. R. & Pippert, R. E. The average connectivity of a graph. Discrete Mathematics 252, 31–45 (2002).

    Article 
    MathSciNet 

    Google Scholar 

  • Rossi, R. & Ahmed, N. The network data repository with interactive graph analytics and visualization. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 29 (2015).

  • link