Effects of self-controlled feedback on learning range of motion measurement techniques and self-efficacy among physical therapy students: a preliminary study | BMC Medical Education

Effects of self-controlled feedback on learning range of motion measurement techniques and self-efficacy among physical therapy students: a preliminary study | BMC Medical Education
  • Boyer KA, Johnson RT, Banks JJ, Jewell C, Hafer JF. Systematic review and meta-analysis of gait mechanics in young and older adults. Exp Gerontol. 2017;95:63–70.

    Article 

    Google Scholar 

  • Astephen JL, Deluzio KJ, Caldwell GE, Dunbar MJ. Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity. J Orthop Res. 2008;26:332–41.

    Article 

    Google Scholar 

  • Monda M, Goldberg A, Smitham P, Thornton M, McCarthy I. Use of inertial measurement units to assess age-related changes in gait kinematics in an active population. J Aging Phys Act. 2015;23:18–23.

    Article 

    Google Scholar 

  • Thaler-Kall K, Peters A, Thorand B, Grill E, Autenrieth CS, Horsch A, et al. Description of spatio-temporal gait parameters in elderly people and their association with history of falls: results of the population-based cross-sectional KORA-Age study. BMC Geriatr. 2015;15:32.

    Article 

    Google Scholar 

  • Benson LC, Cobb SC, Hyngstrom AS, Keenan KG, Luo J, O’Connor KM. Identifying trippers and non-trippers based on knee kinematics during obstacle-free walking. Hum Mov Sci. 2018;62:58–66.

    Article 

    Google Scholar 

  • Hyodo K, Masuda T, Aizawa J, Jinno T, Morita S. Hip, knee, and ankle kinematics during activities of daily living: a cross-sectional study. Braz J Phys Ther. 2017;21:159–66.

    Article 

    Google Scholar 

  • García-Pinillos F, Ruiz-Ariza A, Moreno del Castillo R, Latorre-Román PÁ. Impact of limited hamstring flexibility on vertical jump, kicking speed, sprint, and agility in young football players. J Sports Sci. 2015;33:1293–7.

    Article 

    Google Scholar 

  • Mills M, Frank B, Goto S, Blackburn T, Cates S, Clark M, et al. Effect of restricted hip flexor muscle length on hip extensor muscle activity and lower extremity biomechanics in college-aged female soccer players, Int J Sports Phys Ther. 2015;10:946–54.

  • Nunome H, Ikegami Y, Kozakai R, Apriantono T, Sano S. Segmental dynamics of soccer instep kicking with the preferred and non-preferred leg. J Sports Sci. 2006;24:529–41.

    Article 

    Google Scholar 

  • Bradley PS, Portas MD. The relationship between preseason range of motion and muscle strain injury in elite soccer players. J Strength Cond Res. 2007;21:1155–9.

    Google Scholar 

  • Henderson G, Barnes CA, Portas MD. Factors associated with increased propensity for hamstring injury in english premier league soccer players. J Sci Med Sport. 2010;13:397–402.

    Article 

    Google Scholar 

  • Witvrouw E, Danneels L, Asselman P, D’Have T, Cambier D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study. Am J Sports Med. 2003;31:41–6.

    Article 

    Google Scholar 

  • Peters PG, Herbenick MA, Anloague PA, Markert RJ, Rubino LJ. Knee range of motion: reliability and agreement of 3 measurement methods. Am J Orthop (Belle Mead NJ). 2011;40:E249–52.

    Google Scholar 

  • Lavernia C, D’Apuzzo M, Rossi MD, Lee D. Accuracy of knee range of motion assessment after total knee arthroplasty. J Arthroplasty. 2008;23(Suppl 1):85–91.

    Article 

    Google Scholar 

  • Kato M, Echigo A, Ohta H, Ishiai S, Aoki M, Tsubota S et al. The accuracy of goniometric measurements of proximal interphalangeal joints in fresh cadavers: comparison between methods of measurement, types of goniometers, and fingers. J Hand Ther. 2007;20:12– 8; quiz 19.

  • Bronner S, Agraharasamakulam S, Ojofeitimi S. Reliability and validity of electrogoniometry measurement of lower extremity movement. J Med Eng Technol. 2010;34:232–42.

    Article 

    Google Scholar 

  • Zampagni ML, Casino D, Zaffagnini S, Visani AA, Marcacci M. Estimating the elbow carrying angle with an electrogoniometer: acquisition of data and reliability of measurements. Orthopedics. 2008;31:370.

    Article 

    Google Scholar 

  • Goodwin J, Clark C, Deakes J, Burdon D, Lawrence C. Clinical methods of goniometry: a comparative study. Disabil Rehabil. 1992;14:10–5.

    Article 

    Google Scholar 

  • Lenssen AF, van Dam EM, Crijns YHF, Verhey M, Geesink RJT, van den Brandt PA, et al. Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty. BMC Musculoskelet Disord. 2007;8:83.

    Article 

    Google Scholar 

  • Rachkidi R, Ghanem I, Kalouche I, El Hage S, Dagher F, Kharrat K. Is visual Estimation of passive range of motion in the pediatric lower limb valid and reliable? BMC Musculoskelet Disord. 2009;10:126.

    Article 

    Google Scholar 

  • Terwee CB, de Winter AF, Scholten RJ, Jans MP, Devillé W, van Schaardenburg D, et al. Interobserver reproducibility of the visual Estimation of range of motion of the shoulder. Arch Phys Med Rehabil. 2005;86:1356–61.

    Article 

    Google Scholar 

  • van de Pol RJ, van Trijffel E, Lucas C. Inter-rater reliability for measurement of passive physiological range of motion of upper extremity joints is better if instruments are used: a systematic review. J Physiother. 2010;56:7–17.

    Article 

    Google Scholar 

  • Tojima M, Ogata N, Yozu A, Sumitani M, Haga N. Novel 3-dimensional motion analysis method for measuring the lumbar spine range of motion: repeatability and reliability compared with an electrogoniometer. Spine. 2013;38:E1327–33.

    Article 

    Google Scholar 

  • Edwards JZ, Greene KA, Davis RS, Kovacik MW, Noe DA, Askew MJ. Measuring flexion in knee arthroplasty patients. J Arthroplasty. 2004;19:369–72.

    Article 

    Google Scholar 

  • Blonna D, Zarkadas PC, Fitzsimmons JS, O’Driscoll SW. Accuracy and inter-observer reliability of visual Estimation compared to clinical goniometry of the elbow. Knee Surg Sports Traumatol Arthrosc. 2012;20:1378–85.

    Article 

    Google Scholar 

  • Menadue C, Raymond J, Kilbreath SL, Refshauge KM, Adams R. Reliability of two goniometric methods of measuring active inversion and Eversion range of motion at the ankle. BMC Musculoskelet Disord. 2006;7:60.

    Article 

    Google Scholar 

  • Youdas JW, Bogard CL, Suman VJ. Reliability of goniometric measurements and visual estimates of ankle joint active range of motion obtained in a clinical setting. Arch Phys Med Rehabil. 1993;74:1113–8.

    Article 

    Google Scholar 

  • Brosseau L, Balmer S, Tousignant M, O’Sullivan JP, Goudreault C, Goudreault M, et al. Intra- and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions. Arch Phys Med Rehabil. 2001;82:396–402.

    Article 

    Google Scholar 

  • Brosseau L, Tousignant M, Budd J, Chartier N, Duciaume L, Plamondon S, et al. Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. Physiother Res Int. 1997;2:150–66.

    Article 

    Google Scholar 

  • Watkins MA, Riddle DL, Lamb RL, Personius WJ. Reliability of goniometric measurements and visual estimates of knee range of motion obtained in a clinical setting. Phys Ther. 1991;71:90– 6; discussion 96– 7.

  • Gajdosik RL, Bohannon RW. Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Phys Ther. 1987;67:1867–72.

    Article 

    Google Scholar 

  • Akizuki K, Yamaguchi K, Morita Y, Ohashi Y. The effect of proficiency level on measurement error of range of motion. J Phys Ther Sci. 2016;28:2644–51.

    Article 

    Google Scholar 

  • Rose V, Nduka CC, Pereira JA, Pickford MA, Belcher HJ. Visual Estimation of finger angles: do we need goniometers? J Hand Surg Br. 2002;27:382–4.

    Article 

    Google Scholar 

  • Schmidt RA, Lee TD. Motor learning and performance: from principles to application. J Hum Kinet. 2019:249–74.

  • Akizuki K, Mitamura K, Yamamoto R, Yamaguchi K, Ohashi Y. Extrinsic feedback from a feedback device promotes the learning of range of motion measurements. J Phys Ther Sci. 2020;32:114–9.

    Article 

    Google Scholar 

  • Janelle CM, Barba DA, Frehlich SG, Tennant LK, Cauraugh JH. Maximizing performance feedback effectiveness through videotape replay and a self-controlled learning environment. Res Q Exerc Sport. 1997;68:269–79.

    Article 

    Google Scholar 

  • Janelle CM, Kim J, Singer RN. Subject-controlled performance feedback and learning of a closed motor skill. Percept Mot Skills. 1995;81:627–34.

    Article 

    Google Scholar 

  • Wulf G, Clauss A, Shea CH, Whitacre CA. Benefits of self-control in dyad practice. Res Q Exerc Sport. 2001;72:299–303.

    Article 

    Google Scholar 

  • Chen D, Hendrick JL, Lidor R. Enhancing self-controlled learning environments: the use of self-regulated feedback information. J Hum Mov Stud. 2002;43:69–86.

    Google Scholar 

  • Chiviacowsky S, Wulf G. Self-controlled feedback: does it enhance learning because performers get feedback when they need it? Res Q Exerc Sport. 2002;73:408–15.

    Article 

    Google Scholar 

  • Chiviacowsky S, Wulf G. Self-controlled feedback is effective if it is based on the learner’s performance. Res Q Exerc Sport. 2005;76:42–8.

    Article 

    Google Scholar 

  • Sheaves EG, Snodgrass SJ, Rivett DA. Learning lumbar spine mobilization: the effects of frequency and self-control of feedback. J Orthop Sports Phys Ther. 2012;42:114–24. Epub 2011 Oct 25. PMID: 22030595.

    Article 

    Google Scholar 

  • Zimmerman BJ. Attainment of self-regulation: a social cognitive perspective. In: Boekarts M, Pintrich PR, Zeidner M, editors. Handbook of self-regulation. San Diego, CA: Academic; 2000. pp. 13–39.

    Chapter 

    Google Scholar 

  • Kok M, Komen A, van Capelleveen L, van der Kamp J. The effects of self-controlled video feedback on motor learning and self-efficacy in a physical education setting: an exploratory study on the shot-put. Phys Educ Sport Pedagogy. 2020;25:49–66. https://doi.org/10.1080/17408989.2019.1688773.

    Article 

    Google Scholar 

  • Ste-Marie DM, Carter MJ, Law B, Vertes K, Smith V. Self-controlled learning benefits: exploring contributions of self-efficacy and intrinsic motivation via path analysis. J Sports Sci. 2016;34:1650–6. https://doi.org/10.1080/02640414.2015.1130236.

    Article 

    Google Scholar 

  • Bandura A. Self-efficacy: toward a unifying theory of behavioral change. Psychol Rev. 1977;84:191–215.

    Article 

    Google Scholar 

  • Morton J, Anderson L, Frame F, Moyes J, Cameron H. Back to the future: teaching medical students clinical procedures. Back Future Med Teach. 2006;28:723–8.

    Google Scholar 

  • Yamamoto R, Yoshizato Y, Imai T, Akizuki K. Effect of the post-learning period on the accuracy and self-efficacy of measuring the joint range of motion. J Phys Ther Sci. 2023;35:708–13.

    Article 

    Google Scholar 

  • Ste-Marie DM, Vertes KA, Law B, Rymal AM. Learner-controlled self-observation is advantageous for motor skill acquisition. Front Psychol. 2013;3:1–10. https://doi.org/10.3389/fpsyg.2012.00556.

    Article 

    Google Scholar 

  • Islam R, Bennasar M, Nicholas K, Button K, Holland S, Mulholland P, et al. A nonproprietary movement analysis system (MoJoXlab) based on wearable inertial measurement units applicable to healthy participants and those with anterior cruciate ligament reconstruction across a range of complex tasks: validation study. JMIR MHealth UHealth. 2020;8:e17872.

    Article 

    Google Scholar 

  • Johnston KN, Young M, Kay D, Booth S, Spathis A, Williams MT. Attitude change and increased confidence with management of chronic breathlessness following a health professional training workshop: a survey evaluation. BMC Med Educ. 2020;20:90.

    Article 

    Google Scholar 

  • Tran K, Kovalskiy A, Desai A, Imran A, Ismail R, Hernandez C. The effect of volunteering at a student-run free healthcare clinic on medical students’ self-efficacy, comfortableness, attitude, and interest in working with the underserved population and interest in primary care. Cureus. 2017;9:e1051.

    Google Scholar 

  • Gist ME, Mitchell TR. Self-efficacy: A theoretical analysis of its determinants and malleability. Acad Manag Rev. 1992;17:183.

    Article 

    Google Scholar 

  • Medina-Ramírez RI, Álamo-Arce DD, Rodriguez-Castro F, Cecilio-Fernandes D, Sandars J, Costa MJ. Self-regulated learning microanalysis for the study of the performance of clinical examinations by physiotherapy students. BMC Med Educ. 2020;20:233.

    Article 

    Google Scholar 

  • Seitz AR, Nanez JE, Sr, Holloway S, Tsushima Y, Watanabe T. Two cases requiring external reinforcement in perceptual learning. J Vis. 2006;22:966–73.

    Google Scholar 

  • Herzog MH, Fahle M. The role of feedback in learning a Vernier discrimination task. Vis Res. 1997;37:2133–41.

    Article 

    Google Scholar 

  • Wulf G, Iwatsuki T, Machin B, Kellogg J, Copeland C, Lewthwaite R. Lassoing skill through learner choice. J Mot Behav. 2018;50:285–92.

    Article 

    Google Scholar 

  • Carter MJ, Ste-Marie DM. Not all choices are created equal: task-relevant choices enhance motor learning compared to task-irrelevant choices. Psychon Bull Rev. 2017;24:1879–88.

    Article 

    Google Scholar 

  • St Germain L, Williams A, Balbaa N, Poskus A, Leshchyshen O, Lohse KR, et al. Increased perceptions of autonomy through choice fail to enhance motor skill retention. J Exp Psychol Hum Percept Perform. 2022;48:370–9.

    Article 

    Google Scholar 

  • Wulf G, Shea CH, Matschiner S. Frequent feedback enhances complex motor skill learning. J Mot Behav. 1998;30:180–92.

    Article 

    Google Scholar 

  • Kantak SS, Winstein CJ. Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res. 2012;228:219–31.

    Article 

    Google Scholar 

  • Guadagnoli MA, Kohl RM. Knowledge of results for motor learning: relationship between error Estimation and knowledge of results frequency. J Mot Behav. 2001;33:217–24.

    Article 

    Google Scholar 

  • Hancock GE, Hepworth T, Wembridge K. Accuracy and reliability of knee goniometry methods. J Exp Orthop. 2018;5:46.

    Article 

    Google Scholar 

  • Baaij A, Özok AR, Vӕth M, Musaeus P, Kirkevang LL. Self-efficacy of undergraduate dental students in endodontics within Aarhus and Amsterdam. Int Endod J. 2020;53:276–84.

    Article 

    Google Scholar 

  • link