Effectiveness of machine learning methods in detecting grooming: a systematic meta-analytic review

Effectiveness of machine learning methods in detecting grooming: a systematic meta-analytic review
  • Save the Children. Grooming: Qué es, cómo detectarlo y prevenirlo? (Tech. Rep, Save the Children, 2019).

    Google Scholar 

  • Ringenberg, T. R., Misra, K. & Rayz, J. T. Not So Cute but Fuzzy: Estimating Risk of Sexual Predation in Online Conversations. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2946–2951, (IEEE, 2019).

  • for Missing & Exploited Children, N. C. et al. The online enticement of children: An in-depth analysis of cybertipline reports (2017).

  • Ringenberg, T. R., Seigfried-Spellar, K. C., Rayz, J. M. & Rogers, M. K. A scoping review of child grooming strategies: Pre-and post-internet. Child Abuse & Neglect 123, 105392 (2022).

    Article 

    Google Scholar 

  • Juoloa, P. et al. Sexual Predator Identification 2012 (2012).

  • Perverted Justice. Information about Perverted-Justice.com (2008).

  • Marinos, L. et al. Cyber-bullying and online grooming: Helping to protect against the risks (Tech. Rep, European Network and Information Security Agency (ENISA), 2011).

    MATH 

    Google Scholar 

  • Moayedi, H., Mosallanezhad, M., Rashid, A. S. A., Jusoh, W. A. W. & Muazu, M. A. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications 32, 495–518 (2020).

    Article 

    Google Scholar 

  • Huang, G. & Guo, M. Meta-analysis of the efficacy of acupuncture and moxibustion in the treatment of non-motor symptoms of Parkinson’s disease. Neural Computing and Applications 35, 2089–2101 (2023).

    Article 
    MATH 

    Google Scholar 

  • Murari, A. et al. Information theoretic and neural computational tools for meta-analysis of cumulative databases in the age of Big Physics experiments. Neural Computing and Applications 35, 469–486 (2023).

    Article 
    MATH 

    Google Scholar 

  • Kumar, A. & Sachdeva, N. Cyberbullying detection on social multimedia using soft computing techniques: a meta-analysis. Multimedia Tools and Applications 78, 23973–24010 (2019).

    Article 
    MATH 

    Google Scholar 

  • Kaburu, S. & Newton-Fisher, N. Bystanders, parcelling, and an absence of trust in the grooming interactions of wild male chimpanzees. Scientific Reports 6, (2016).

  • Wada-Katsumata, A. & Schal, C. Antennal grooming facilitates courtship performance in a group-living insect, the german cockroach blattella germanica. Scientific Reports 7, (2019).

  • Morfin, N., Goodwin, P. H., Hunt, G. J. & Guzman-Novoa, E. Effects of sublethal doses of clothianidin and/or V. destructor on honey bee (Apis mellifera) self-grooming behavior and associated gene expression. Scientific Reports 9, 5196, (2019).

  • Anzà, S., Demuru, E. & Palagi, E. Sex and grooming as exchange commodities in female bonobos’ daily biological market. Scientific Reports 11, 19344. (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Disarbois, E. & Duhamel, J.-R. Virtual social grooming in macaques and its psychophysiological effects. Scientific Reports 14, (2024).

  • Morris, C. Identifying online sexual predators by svm classification with lexical and behavioral features. Master of Science Thesis, University Of Toronto, Canada (2013).

  • Aldana, D., Salgueiro, Y., Bellinger, C., Rivera, M. & Astudillo, C. Performance assessment of classification methods for the inductance within a VSI. In Munoz C. Lefranc G., F.-F. M. R. E. D.-F. C. (ed.) IEEE ICA-ACCA 2018 – IEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control: Towards an Industry 4.0 – Proceedings, (Institute of Electrical and Electronics Engineers Inc., 2019).

  • Garriga, M. et al. Assessing wheat traits by spectral reflectance: Do we really need to focus on predicted trait-values or directly identify the elite genotypes group? Frontiers in Plant Science 8, (2017).

  • González, C., Astudillo, C. A., López-Cortés, X. A. & Maldonado, S. Semi-supervised learning for MALDI-TOF mass spectrometry data classification: an application in the salmon industry. Neural Computing and Applications[SPACE] (2023).

    Article 
    MATH 

    Google Scholar 

  • Cerpa, N., Bardeen, M., Astudillo, C. A. & Verner, J. Evaluating different families of prediction methods for estimating software project outcomes. Journal of Systems and Software 112, 48–64. (2016).

    Article 
    MATH 

    Google Scholar 

  • Astudillo, C. A., González, J. I., Oommen, B. J. & Yazidi, A. Concept Drift Detection Using Online Histogram-Based Bayesian Classifiers. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9992 LNAI, 175–182, (2016).

  • Wu, X. et al. Top 10 algorithms in data mining. Knowledge and information systems 14, 1–37 (2008).

    Article 
    MATH 

    Google Scholar 

  • Cox, D. R. The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological) 21, 238–238 (1959).

    Article 
    MATH 

    Google Scholar 

  • Pranoto, H., Gunawan, F. E. & Soewito, B. Logistic models for classifying online grooming conversation. Procedia Computer Science 59, 357–365. (2015). Pranoto

  • Moya-Carvajal, J., Pérez-Galarce, F., Taramasco, C., Astudillo, C. A. & Candia-Véjar, A. ML models for severity classification and length-of-stay forecasting in emergency units. Expert Systems with Applications 223, 119864. (2023).

    Article 
    MATH 

    Google Scholar 

  • Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 46, 175–185 (1992).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Ho, T. K. Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition, vol. 1, 278–282 (IEEE, 1995).

  • Schapire, R. E. Explaining adaboost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, 37–52 (Springer, 2013).

  • Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of statistics 1189–1232 (2001).

  • Agarwal, N., Ünlü, T., Wani, M. A. & Bours, P. Predatory Conversation Detection Using Transfer Learning Approach. 488–499, (2022).

  • Wang, X., Wang, Y., Qi, W., Kong, D. & Wang, W. BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery. Neural Networks 170, 312–324. (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Hamzah, N. A. & Dhannoon, B. N. The detection of sexual harassment and chat predators using artificial neural network. Karbala International Journal of Modern Science 7, (2021). Hamzah2021.

  • Vogt, M., Leser, U. & Akbik, A. Early detection of sexual predators in chats. ACL-IJCNLP 2021 – 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference 4985–4999, (2021). Vogt2021.

  • Bours, P. & Kulsrud, H. Detection of cyber grooming in online conversation. 2019 IEEE International Workshop on Information Forensics and Security (WIFS) 1–6, (2019). Bours2019.

  • Kim, J., Kim, Y. J., Behzadi, M. & Harris, I. G. Analysis of online conversations to detect cyberpredators using recurrent neural networks. In Proceedings for the First International Workshop on Social Threats in Online Conversations: Understanding and Management, 15–20 (European Language Resources Association (eds Bhatia, A. & Shaikh, S.) (Marseille, France, 2020).

    Google Scholar 

  • Gheyas, I. A. & Abdallah, A. E. Detection and prediction of insider threats to cyber security: a systematic literature review and meta-analysis. Big data analytics 1, 6. (2016).

    Article 
    MATH 

    Google Scholar 

  • Rawindaran, N., Jayal, A. & Prakash, E. Machine learning cybersecurity adoption in small and medium enterprises in developed countries. Computers 10, (2021).

  • Nelson, T., O’Brien, A. & Noteboom, C. Machine learning applications in malware classification: A meta-analysis literature review. International Journal on Cybernetics & Informatics (IJCI) 12, 113 (2023).

  • McKinnel, D. R., Dargahi, T., Dehghantanha, A. & Choo, K.-K.R. A systematic literature review and meta-analysis on artificial intelligence in penetration testing and vulnerability assessment. Computers & Electrical Engineering 75, 175–188. (2019).

    Article 

    Google Scholar 

  • Borj, P. R., Kadhim, Q. K., Al-Bander, B. & Yusof, R. & Saif, A (Detection methods, dataset, validation methodology, and challenges. IET Networks, Meta-analysis and systematic review for anomaly network intrusion detection systems, 2024).

    Google Scholar 

  • M, D. & Dhiipan, J. A Meta-Analysis of Efficient Countermeasures for Data Security. In 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), 1303–1308, (IEEE, 2022).

  • Critical Appraisal Skills Programme. Casp checklists (2023). Accessed: 2023.

  • Amuchi, F., Al-Nemrat, A., Alazab, M. & Layton, R. Identifying cyber predators through forensic authorship analysis of chat logs. 2012 Third Cybercrime and Trustworthy Computing Workshop 28–37, (2012). Amuchi2012.

  • Anderson, P., Zuo, Z., Yang, L. & Qu, Y. An intelligent online grooming detection system using ai technologies. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 1–6, (2019). Anderson2019.

  • Andleeb, S., Ahmed, R., Ahmed, Z. & Kanwal, M. Identification and classification of cybercrimes using text mining technique. 2019 International Conference on Frontiers of Information Technology (FIT) 227–2275, (2019).

  • Ashcroft, M., Kaati, L. & Meyer, M. A step towards detecting online grooming – identifying adults pretending to be children. 2015 European Intelligence and Security Informatics Conference 98–104, (2015). Ashcroft2015.

  • Bogdanova, D., Rosso, P. & Solorio, T. Exploring high-level features for detecting cyberpedophilia. Computer Speech & Language 28, 108–120. (2014). Bogdanova

  • Borj, P. R. & Bours, P. Predatory conversation detection. 2019 International Conference on Cyber Security for Emerging Technologies (CSET) 1–6, (2019). Borj2019.

  • Borj, P. R., Raja, K. & Bours, P. On preprocessing the data for improving sexual predator detection : Anonymous for review. 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA 1–6, (2020). Borj2020.

  • Borj, P. R., Raja, K. & Bours, P. Detecting sexual predatory chats by perturbed data and balanced ensembles. 2021 International Conference of the Biometrics Special Interest Group (BIOSIG) 1–5, (2021). Borj2021.

  • Borj, P. R., Raja, K. & Bours, P. Detecting online grooming by simple contrastive chat embeddings. In Proceedings of the 9th ACM International Workshop on Security and Privacy Analytics (IWSPA ’23), 9, (ACM, New York, NY, USA, 2023).

  • Cano, A. E., Fernandez, M. & Alani, H. Detecting Child Grooming Behaviour Patterns on Social Media (2014). Cano2014.

  • Cardei, C. & Rebedea, T. Detecting sexual predators in chats using behavioral features and imbalanced learning. Natural Language Engineering 23, 589–616. (2017). Cardei

  • Cheong, Y.-G., Jensen, A. K., Gudnadottir, E. R., Bae, B.-C. & Togelius, J. Detecting predatory behavior in game chats. IEEE Transactions on Computational Intelligence and AI in Games 7, 220–232. (2015).

    Article 

    Google Scholar 

  • Dhouioui, Z. & Akaichi, J. Privacy protection protocol in social networks based on sexual predators detection. Proceedings of the International Conference on Internet of things and Cloud Computing 1–6, (2016). Dhouioui2016.

  • Ebrahimi, M., Suen, C. Y. & Ormandjieva, O. Detecting predatory conversations in social media by deep convolutional neural networks. Digital Investigation 18, 33–49. (2016). Ebrahimi

  • Ebrahimi, M., Suen, C. Y., Ormandjieva, O. & Krzyzak, A. Recognizing predatory chat documents using semi-supervised anomaly detection. Electronic Imaging 28, 1–9, (2016). EbrahimiSuen2016.

  • Faraz, A., Ahsan, F., Mounsef, J., Karamitsos, I. & Kanavos, A. Enhancing child safety in online gaming: The development and application of protectbot, an ai-powered chatbot framework. Information 15, 233. (2024).

    Article 

    Google Scholar 

  • Fauzi, M. A. & Bours, P. Ensemble method for sexual predators identification in online chats. 2020 8th International Workshop on Biometrics and Forensics (IWBF) 1–6, (2020). Fauzi2020.

  • Fauzi, M. A., Wolthusen, S., Yang, B., Bours, P. & Yeng, P. Identifying sexual predators in chats using svm and feature ensemble. In 2023 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), 1–6, (IEEE, 2023).

  • Gunawan, F. E., Ashianti, L., Candra, S. & Soewito, B. Detecting online child grooming conversation. 2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS) 1–6, (2016). Gunawan2016.

  • Isaza, G., Muñoz, F., Castillo, L. & Buitrago, F. Classifying cybergrooming for child online protection using hybrid machine learning model. Neurocomputing 484, 250–259. (2022). Isaza

  • Kirupalini, S. et al. Prevention of emotional entrapment of children on social media. Proceedings of the 2021 International Conference on Emerging Techniques in Computational Intelligence, ICETCI 2021 95–100, (2021).

  • Melleby Aarnseth, S. Fine Tuning BERT for Detecting Cyber Grooming in Online Chats. Ph.D. thesis, Norwegian University of Science and Technology (2023).

  • Michalopoulos, D., Mavridis, I. & Jankovic, M. Gars: Real-time system for identification, assessment and control of cyber grooming attacks. Computers and Security 42, 177–190. (2014). Michalopoulos

  • Milon-Flores, D. F. & Cordeiro, R. L. How to take advantage of behavioral features for the early detection of grooming in online conversations. Knowledge-Based Systems 240, 108017. (2022). Milon

  • Misra, K., Devarapalli, H., Ringenberg, T. R. & Rayz, J. T. Authorship analysis of online predatory conversations using character level convolution neural networks. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) 623–628, (2019). Misra2019.

  • Mohammed, B. B., Bisallah, H. I., Musa, I. & Okorie, I. Detecting cyber grooming using text mining, support vector machine, naïve bayes and random forest. International Journal Of Advance Research And Innovative Ideas In Education 10,16.0415/IJARIIE-22418 (2024). IJARIIE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  • Muñoz, F., Isaza, G. & Castillo, L. SMARTSEC4COP: Smart Cyber-Grooming Detection Using Natural Language Processing and Convolutional Neural Networks (2021). Vogt2021.

  • Ngejane, C., Eloff, J., Sefara, T. & Marivate, V. Digital forensics supported by machine learning for the detection of online sexual predatory chats. Forensic Science International: Digital Investigation 36, 301109. (2021). Ngejane

  • Nyrem Eilifsen, T., Shrestha, B. & Bours, P. Early detection of cyber grooming in online conversations: A dynamic trust model and sliding window approach. In 2023 21st International Conference on Emerging eLearning Technologies and Applications (ICETA), Norwegian University of Science and Technology (NTNU), Department of Information Security and Communication Technology, Gjøvik, Norway (IEEE, 2023).

  • Pandey, S. J., Klapaftis, I. & Manandhar, S. Detecting Predatory Behaviour from Online Textual Chats. 270–281, (2012).

  • Parapar, J., Losada, D. E. & Barreiro, A. Combining psycho-linguistic, content-based and chat-based features to detect predation in chatrooms. Article in JOURNAL OF UNIVERSAL COMPUTER SCIENCE (2014). Parapar2014.

  • Peersman, C., Vaassen, F., Van Asch, V. & Daelemans, W. Conversation level constraints on pedophile detection in chat rooms. In CLEF (2012).

  • Preuß, S. et al. Automatically identifying online grooming chats using cnn-based feature extraction (2021). Preuß2021.

  • Suhartono, D., Gazali, W. & Mamahit, K. F. Analytic hierarchy process in detecting probability of online child grooming using neural network. ICIC Express Letters 13, 1087–1095, (2019). Suhartono2019.

  • Vartapetiance, A. & Gillam, L. “our little secret’’: pinpointing potential predators. Security Informatics 3, 3. (2014).

    Article 

    Google Scholar 

  • Waezi, H., Barzegar, R. & Fani, H. Osprey: Framework for online grooming detection via neural models and conversation features. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM ’24), 6, (ACM, New York, NY, USA, 2024).

  • Zambrano, P. et al. Technical mapping of the grooming anatomy using machine learning paradigms: An information security approach. IEEE Access 7, 142129–142146. (2019). Zambrano

  • Zuo, Z., Li, J., Anderson, P., Yang, L. & Naik, N. Grooming detection using fuzzy-rough feature selection and text classification. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 1–8, (2018). Zou2018.

  • Zuo, Z. et al. Adaptive activation function generation for artificial neural networks through fuzzy inference with application in grooming text categorisation. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 1–6, (2019). Zuo2019.

  • Razi, A. et al. A human-centered systematic literature review of the computational approaches for online sexual risk detection. Proceedings of the ACM on Human-Computer Interaction 5, (2021).

  • Leiva-Bianchi, M., Ahumada, F., Araneda, A. & Botella, J. What is the psychosocial impact of disasters? a meta-analysis. Issues in mental health nursing 39, 320–327 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Kaylor, L. E., Winters, G. M. & Jeglic, E. L. Exploring sexual grooming in female perpetrated child sexual abuse. Journal of child sexual abuse 31, 503–521 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sutton, S. & Finkelhor, D. Perpetrators’ identity in online crimes against children: A meta-analysis. Trauma, Violence, & Abuse 25, 1756–1768 (2024).

    Article 
    MATH 

    Google Scholar 

  • Black, P. J., Wollis, M., Woodworth, M. & Hancock, J. T. A linguistic analysis of grooming strategies of online child sex offenders: Implications for our understanding of predatory sexual behavior in an increasingly computer-mediated world. Child abuse & neglect 44, 140–149 (2015).

    Article 

    Google Scholar 

  • Babchishin, K. M., Hanson, R. K. & VanZuylen, H. Online child pornography offenders are different: A meta-analysis of the characteristics of online and offline sex offenders against children. Archives of sexual behavior 44, 45–66 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Laird, J. J., Klettke, B., Hall, K., Clancy, E. & Hallford, D. Demographic and psychosocial factors associated with child sexual exploitation: A systematic review and meta-analysis. JAMA network open 3, e2017682–e2017682 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic reviews 10, 1–11 (2021).

    Article 
    MATH 

    Google Scholar 

  • Tricco, A. C. et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of internal medicine 169, 467–473 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Khan, S., Ali, H. & Shah, Z. Identifying the role of vision transformer for skin cancer-a scoping review. Frontiers in Artificial Intelligence 6, 1202990. (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Higgins, J. P. T. et al. (eds.) Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Collaboration, 2023).

  • Botella, J. & Sánchez-Meca, J. Meta-análisis en ciencias sociales y de la salud (Editorial Síntesis, Madrid, 2015).

    MATH 

    Google Scholar 

  • link