A personalized mRNA signature for predicting hypertrophic cardiomyopathy applying machine learning methods

A personalized mRNA signature for predicting hypertrophic cardiomyopathy applying machine learning methods
  • Wang, L. et al. Assessment of reversibility in pulmonary hypertension related to congenital heart disease by using biomarkers and clinical features. Congenit. Heart Dis. 17(1), 87–97 (2022).

    Article 

    Google Scholar 

  • Park, J.-S. et al. Factors affecting the genetic diagnostic rate in congenital heart disease. Congenit. Heart Dis. 17(6), 653–673 (2022).

    Article 

    Google Scholar 

  • Yusuf, S. et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 395(10226), 795–808 (2020).

    Article 
    PubMed 

    Google Scholar 

  • McCarty, M. F. Nutraceutical, dietary, and lifestyle options for prevention and treatment of ventricular hypertrophy and heart failure. Int. J. Mol. Sci. 22(7), 3321 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xin, L. et al. Integrative expression analyses revealed potential biomarkers in hypertrophic cardiomyopathy. J. Biol. Regul. Homeost. Agents 37(6), 3141–3150 (2023).

    Google Scholar 

  • Maron, B. J. & Maron, M. S. Hypertrophic cardiomyopathy. Lancet 381(9862), 242–255 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Elliott, P. M. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35(39), 2733–2779 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Ommen, S. R. et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 142(25), e533–e557 (2020).

    PubMed 

    Google Scholar 

  • Verma, A. A. et al. Implementing machine learning in medicine. CMAJ 193(34), E1351-e1357 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chunguang, L. et al. Identification of prognostic biomarkers for gastric cancer using a machine learning method. J. Biol. Regul. Homeostat. Agents 37(1), 259–270 (2023).

    Google Scholar 

  • Zhao, E., Xie, H. & Zhang, Y. Predicting diagnostic gene biomarkers associated with immune infiltration in patients with acute myocardial infarction. Front. Cardiovasc. Med. 7, 586871 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, S. et al. Integrative machine learning algorithms for developing a consensus RNA modification-based signature for guiding clinical decision-making in bladder cancer. Oncologie 26(2), 269–285 (2024).

    Article 

    Google Scholar 

  • Deo, R. C. Machine learning in medicine. Circulation 132(20), 1920–1930 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Avery, C., Patterson, J., Grear, T., Frater, T. & Jacobs, D. J. Protein function analysis through machine learning. Biomolecules 12(9), 1246 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patra, P., Disha, B. R., Kundu, P., Das, M. & Ghosh, A. Recent advances in machine learning applications in metabolic engineering. Biotechnol. Adv. 62, 108069 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lynch, C. M. et al. Prediction of lung cancer patient survival via supervised machine learning classification techniques. Int. J. Med. Inform. 108, 1–8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C. M. et al. Machine learning to predict the cancer-specific mortality of patients with primary non-metastatic invasive breast cancer. Surg. Today 51(5), 756–763 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, W. et al. Machine learning to improve prognosis prediction of metastatic clear-cell renal cell carcinoma treated with cytoreductive nephrectomy and systemic therapy. Biomol. Biomed. 23(3), 471–482 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bos, J. M. et al. Marked up-regulation of ACE2 in hearts of patients with obstructive hypertrophic cardiomyopathy: Implications for SARS-CoV-2-mediated COVID-19. Mayo Clin. Proc. 95(7), 1354–1368 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lakshminarayan, K., Harp, S. A. & Samad, T. Imputation of missing data in industrial databases. Appl. Intell. 11(3), 259–275 (1999).

    Article 

    Google Scholar 

  • Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3), 307–315 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 16(5), 284–287 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Article 

    Google Scholar 

  • Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y., Zheng, H., Wang, C., Xiao, W. & Liu, T. Predicting apoptosis protein subcellular locations based on the protein overlapping property matrix and tri-gram encoding. Int. J. Mol. Sci. 20(9), 2344 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, S. et al. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteomics 15(1), 41–51 (2018).

    CAS 

    Google Scholar 

  • Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).

    Article 

    Google Scholar 

  • Maron, B. J. et al. Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79(4), 390–414 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Allen, R. D., Edwards, W. D., Tazelaar, H. D. & Danielson, G. K. Surgical pathology of subaortic septal myectomy not associated with hypertrophic cardiomyopathy: A study of 98 cases (1996–2000). Cardiovasc. Pathol. 12(4), 207–215 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Phadke, R. S., Vaideeswar, P., Mittal, B. & Deshpande, J. Hypertrophic cardiomyopathy: An autopsy analysis of 14 cases. J. Postgrad. Med. 47(3), 165–170 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Baandrup, U. & Olsen, E. G. Critical analysis of endomyocardial biopsies from patients suspected of having cardiomyopathy. I: Morphological and morphometric aspects. Br. Heart J. 45(5), 475–86 (1981).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zen, K. et al. Analysis of circulating apoptosis mediators and proinflammatory cytokines in patients with idiopathic hypertrophic cardiomyopathy: Comparison between nonobstructive and dilated-phase hypertrophic cardiomyopathy. Int. Heart J. 46(2), 231–244 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Högye, M., Mándi, Y., Csanády, M., Sepp, R. & Buzás, K. Comparison of circulating levels of interleukin-6 and tumor necrosis factor-alpha in hypertrophic cardiomyopathy and in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 94(2), 249–251 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Fang, L. et al. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am. J. Transl. Res. 9(11), 5063–5073 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maron, B. J. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92(4), 785–9 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prabhu, S. D. & Frangogiannis, N. G. The Biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ. Res. 119(1), 91–112 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, H. et al. Identification and analysis of key hypoxia- and immune-related genes in hypertrophic cardiomyopathy. Biol. Res. 56(1), 45 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Zhang, W., Dai, Y. & Chen, K. Identification and verification of IGFBP3 and YTHDC1 as biomarkers associated with immune infiltration and mitophagy in hypertrophic cardiomyopathy. Front. Genet. 13, 986995 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, T. et al. A double heterozygous variant in MYH6 and MYH7 associated with hypertrophic cardiomyopathy in a Japanese Family. J. Cardiol. Cases 25(4), 213–217 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ishikawa, T. et al. Novel mutation in the α-myosin heavy chain gene is associated with sick sinus syndrome. Circulation 8(2), 400–408 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Shih, Y. H. et al. Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish. Circulation 8(2), 261–269 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, D. et al. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res. 47(10), 5341–5355 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q. et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 49(8), 4689–4704 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Da’as, S. I. et al. Hypertrophic cardiomyopathy-linked variants of cardiac myosin-binding protein C3 display altered molecular properties and actin interaction. Biochem. J. 475(24), 3933–3948 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. R. et al. Rapid expression of RASD1 is regulated by estrogen receptor-dependent intracellular signaling pathway in the mouse uterus. Mol. Cell. Endocrinol. 446, 32–39 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McGrath, M. F., Ogawa, T. & de Bold, A. J. Ras dexamethasone-induced protein 1 is a modulator of hormone secretion in the volume overloaded heart. Am. J. Physiol. 302(9), H1826-37 (2012).

    CAS 

    Google Scholar 

  • Tan, J. J., Ong, S. A. & Chen, K. S. Rasd1 interacts with Ear2 (Nr2f6) to regulate renin transcription. BMC Mol. Biol. 12, 4 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishanov, A. et al. Angiotensin II type 1 receptor gene polymorphisms in patients with cardiac hypertrophy. Jpn. Heart J. 39(1), 87–96 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Orenes-Piñero, E. et al. Impact of polymorphisms in the renin-angiotensin-aldosterone system on hypertrophic cardiomyopathy. J. Renin-Angiotensin-Aldosterone Syst. 12(4), 521–530 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Munthe-Fog, L. et al. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency. N. Engl. J. Med. 360(25), 2637–2644 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lidani, K. C. F. et al. Ficolin-3 in chronic Chagas disease: Low serum levels associated with the risk of cardiac insufficiency. Parasite Immunol. 43(6), e12829 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Y., Zhang, Y. & Zhao, C. Integrated gene expression profiling analysis reveals SERPINA3, FCN3, FREM1, MNS1 as candidate biomarkers in heart failure and their correlation with immune infiltration. J. Thorac. Dis. 14(4), 1106–1119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, J. et al. A common genetic variant of FCN3/CD164L2 is associated with essential hypertension in a Chinese population. Clin. Exp. 34(5), 377–82 (2012).

    CAS 

    Google Scholar 

  • Cui, Y., Liu, C., Luo, J. & Liang, J. Dysfunctional network and mutation genes of hypertrophic cardiomyopathy. J. Healthc. Eng. 2022, 8680178 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link