A personalized mRNA signature for predicting hypertrophic cardiomyopathy applying machine learning methods
Wang, L. et al. Assessment of reversibility in pulmonary hypertension related to congenital heart disease by using biomarkers and clinical features. Congenit. Heart Dis. 17(1), 87–97 (2022).
Google Scholar
Park, J.-S. et al. Factors affecting the genetic diagnostic rate in congenital heart disease. Congenit. Heart Dis. 17(6), 653–673 (2022).
Google Scholar
Yusuf, S. et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 395(10226), 795–808 (2020).
Google Scholar
McCarty, M. F. Nutraceutical, dietary, and lifestyle options for prevention and treatment of ventricular hypertrophy and heart failure. Int. J. Mol. Sci. 22(7), 3321 (2021).
Google Scholar
Xin, L. et al. Integrative expression analyses revealed potential biomarkers in hypertrophic cardiomyopathy. J. Biol. Regul. Homeost. Agents 37(6), 3141–3150 (2023).
Maron, B. J. & Maron, M. S. Hypertrophic cardiomyopathy. Lancet 381(9862), 242–255 (2013).
Google Scholar
Elliott, P. M. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35(39), 2733–2779 (2014).
Google Scholar
Ommen, S. R. et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 142(25), e533–e557 (2020).
Google Scholar
Verma, A. A. et al. Implementing machine learning in medicine. CMAJ 193(34), E1351-e1357 (2021).
Google Scholar
Chunguang, L. et al. Identification of prognostic biomarkers for gastric cancer using a machine learning method. J. Biol. Regul. Homeostat. Agents 37(1), 259–270 (2023).
Zhao, E., Xie, H. & Zhang, Y. Predicting diagnostic gene biomarkers associated with immune infiltration in patients with acute myocardial infarction. Front. Cardiovasc. Med. 7, 586871 (2020).
Google Scholar
Jia, S. et al. Integrative machine learning algorithms for developing a consensus RNA modification-based signature for guiding clinical decision-making in bladder cancer. Oncologie 26(2), 269–285 (2024).
Google Scholar
Deo, R. C. Machine learning in medicine. Circulation 132(20), 1920–1930 (2015).
Google Scholar
Avery, C., Patterson, J., Grear, T., Frater, T. & Jacobs, D. J. Protein function analysis through machine learning. Biomolecules 12(9), 1246 (2022).
Google Scholar
Patra, P., Disha, B. R., Kundu, P., Das, M. & Ghosh, A. Recent advances in machine learning applications in metabolic engineering. Biotechnol. Adv. 62, 108069 (2023).
Google Scholar
Lynch, C. M. et al. Prediction of lung cancer patient survival via supervised machine learning classification techniques. Int. J. Med. Inform. 108, 1–8 (2017).
Google Scholar
Zhou, C. M. et al. Machine learning to predict the cancer-specific mortality of patients with primary non-metastatic invasive breast cancer. Surg. Today 51(5), 756–763 (2021).
Google Scholar
Yang, W. et al. Machine learning to improve prognosis prediction of metastatic clear-cell renal cell carcinoma treated with cytoreductive nephrectomy and systemic therapy. Biomol. Biomed. 23(3), 471–482 (2023).
Google Scholar
Bos, J. M. et al. Marked up-regulation of ACE2 in hearts of patients with obstructive hypertrophic cardiomyopathy: Implications for SARS-CoV-2-mediated COVID-19. Mayo Clin. Proc. 95(7), 1354–1368 (2020).
Google Scholar
Lakshminarayan, K., Harp, S. A. & Samad, T. Imputation of missing data in industrial databases. Appl. Intell. 11(3), 259–275 (1999).
Google Scholar
Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3), 307–315 (2004).
Google Scholar
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 16(5), 284–287 (2012).
Google Scholar
Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
Google Scholar
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).
Google Scholar
Yang, Y., Zheng, H., Wang, C., Xiao, W. & Liu, T. Predicting apoptosis protein subcellular locations based on the protein overlapping property matrix and tri-gram encoding. Int. J. Mol. Sci. 20(9), 2344 (2019).
Google Scholar
Huang, S. et al. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteomics 15(1), 41–51 (2018).
Google Scholar
Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
Google Scholar
Maron, B. J. et al. Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79(4), 390–414 (2022).
Google Scholar
Allen, R. D., Edwards, W. D., Tazelaar, H. D. & Danielson, G. K. Surgical pathology of subaortic septal myectomy not associated with hypertrophic cardiomyopathy: A study of 98 cases (1996–2000). Cardiovasc. Pathol. 12(4), 207–215 (2003).
Google Scholar
Phadke, R. S., Vaideeswar, P., Mittal, B. & Deshpande, J. Hypertrophic cardiomyopathy: An autopsy analysis of 14 cases. J. Postgrad. Med. 47(3), 165–170 (2001).
Google Scholar
Baandrup, U. & Olsen, E. G. Critical analysis of endomyocardial biopsies from patients suspected of having cardiomyopathy. I: Morphological and morphometric aspects. Br. Heart J. 45(5), 475–86 (1981).
Google Scholar
Zen, K. et al. Analysis of circulating apoptosis mediators and proinflammatory cytokines in patients with idiopathic hypertrophic cardiomyopathy: Comparison between nonobstructive and dilated-phase hypertrophic cardiomyopathy. Int. Heart J. 46(2), 231–244 (2005).
Google Scholar
Högye, M., Mándi, Y., Csanády, M., Sepp, R. & Buzás, K. Comparison of circulating levels of interleukin-6 and tumor necrosis factor-alpha in hypertrophic cardiomyopathy and in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 94(2), 249–251 (2004).
Google Scholar
Fang, L. et al. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am. J. Transl. Res. 9(11), 5063–5073 (2017).
Google Scholar
Maron, B. J. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92(4), 785–9 (1995).
Google Scholar
Prabhu, S. D. & Frangogiannis, N. G. The Biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ. Res. 119(1), 91–112 (2016).
Google Scholar
Yu, H. et al. Identification and analysis of key hypoxia- and immune-related genes in hypertrophic cardiomyopathy. Biol. Res. 56(1), 45 (2023).
Google Scholar
Li, Y., Zhang, W., Dai, Y. & Chen, K. Identification and verification of IGFBP3 and YTHDC1 as biomarkers associated with immune infiltration and mitophagy in hypertrophic cardiomyopathy. Front. Genet. 13, 986995 (2022).
Google Scholar
Suzuki, T. et al. A double heterozygous variant in MYH6 and MYH7 associated with hypertrophic cardiomyopathy in a Japanese Family. J. Cardiol. Cases 25(4), 213–217 (2022).
Google Scholar
Ishikawa, T. et al. Novel mutation in the α-myosin heavy chain gene is associated with sick sinus syndrome. Circulation 8(2), 400–408 (2015).
Google Scholar
Shih, Y. H. et al. Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish. Circulation 8(2), 261–269 (2015).
Google Scholar
Chen, D. et al. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res. 47(10), 5341–5355 (2019).
Google Scholar
Zhang, Q. et al. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res. 49(8), 4689–4704 (2021).
Google Scholar
Da’as, S. I. et al. Hypertrophic cardiomyopathy-linked variants of cardiac myosin-binding protein C3 display altered molecular properties and actin interaction. Biochem. J. 475(24), 3933–3948 (2018).
Google Scholar
Kim, H. R. et al. Rapid expression of RASD1 is regulated by estrogen receptor-dependent intracellular signaling pathway in the mouse uterus. Mol. Cell. Endocrinol. 446, 32–39 (2017).
Google Scholar
McGrath, M. F., Ogawa, T. & de Bold, A. J. Ras dexamethasone-induced protein 1 is a modulator of hormone secretion in the volume overloaded heart. Am. J. Physiol. 302(9), H1826-37 (2012).
Google Scholar
Tan, J. J., Ong, S. A. & Chen, K. S. Rasd1 interacts with Ear2 (Nr2f6) to regulate renin transcription. BMC Mol. Biol. 12, 4 (2011).
Google Scholar
Ishanov, A. et al. Angiotensin II type 1 receptor gene polymorphisms in patients with cardiac hypertrophy. Jpn. Heart J. 39(1), 87–96 (1998).
Google Scholar
Orenes-Piñero, E. et al. Impact of polymorphisms in the renin-angiotensin-aldosterone system on hypertrophic cardiomyopathy. J. Renin-Angiotensin-Aldosterone Syst. 12(4), 521–530 (2011).
Google Scholar
Munthe-Fog, L. et al. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency. N. Engl. J. Med. 360(25), 2637–2644 (2009).
Google Scholar
Lidani, K. C. F. et al. Ficolin-3 in chronic Chagas disease: Low serum levels associated with the risk of cardiac insufficiency. Parasite Immunol. 43(6), e12829 (2021).
Google Scholar
Jiang, Y., Zhang, Y. & Zhao, C. Integrated gene expression profiling analysis reveals SERPINA3, FCN3, FREM1, MNS1 as candidate biomarkers in heart failure and their correlation with immune infiltration. J. Thorac. Dis. 14(4), 1106–1119 (2022).
Google Scholar
Lu, J. et al. A common genetic variant of FCN3/CD164L2 is associated with essential hypertension in a Chinese population. Clin. Exp. 34(5), 377–82 (2012).
Google Scholar
Cui, Y., Liu, C., Luo, J. & Liang, J. Dysfunctional network and mutation genes of hypertrophic cardiomyopathy. J. Healthc. Eng. 2022, 8680178 (2022).
Google Scholar
link