Predicting emergence of crystals from amorphous precursors with deep learning potentials

Predicting emergence of crystals from amorphous precursors with deep learning potentials
  • De Yoreo, J. J. Casting a bright light on Ostwald’s rule of stages. Proc. Natl Acad. Sci. USA 119, e2121661119 (2022).

    Article 

    Google Scholar 

  • Ostwald, W. Studien über die Bildung und umwandlung fester Körper: 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22U, 289–330 (1897).

    Article 

    Google Scholar 

  • Chung, S.-Y., Kim, Y.-M., Kim, J.-G. & Kim, Y.-J. Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat. Phys. 5, 68–73 (2008).

    Article 

    Google Scholar 

  • De Yoreo, J. J. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).

    Article 

    Google Scholar 

  • Schmelzer, J. W. P. & Abyzov, A. S. in Thermal Physics and Thermal Analysis (eds Hubík, Š. J. & Mareš, J. P.) 195–211 (Springer, 2017).

  • Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl Acad. Sci. USA 107, 16438–16443 (2010).

    Article 

    Google Scholar 

  • Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003).

    Article 

    Google Scholar 

  • Janicki, T. D., Wan, Z., Liu, R., Evans, P. G. & Schmidt, J. R. Guiding epitaxial crystallization of amorphous solids at the nanoscale: interfaces, stress and precrystalline order. J. Chem. Phys. 157, 100901 (2022).

    Article 

    Google Scholar 

  • Hudson, R. L. Infrared spectra and band strengths of CH3SH, an interstellar molecule. Phys. Chem. Chem. Phys. 18, 25756–25763 (2016).

    Article 

    Google Scholar 

  • Nonaka, T., Ohbayashi, G., Toriumi, Y., Mori, Y. & Hashimoto, H. Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films 370, 258–261 (2000).

    Article 

    Google Scholar 

  • McHenry, M. E., Willard, M. A. & Laughlin, D. E. Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291–433 (1999).

    Article 

    Google Scholar 

  • Holand, W. & Beall, G. H. GlassCeramic Technology (Wiley, 2019).

  • Johnson, D. C. Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opin. Solid State Mater. Sci. 3, 159–167 (1998).

    Article 

    Google Scholar 

  • Cordova, D. L. M. & Johnson, D. C. Synthesis of metastable inorganic solids with extended structures. ChemPhysChem 21, 1345–1368 (2020).

    Article 

    Google Scholar 

  • Evans, P. G., Chen, Y., Tilka, J. A., Babcock, S. E. & Kuech, T. F. Crystallization of amorphous complex oxides: new geometries and new compositions via solid phase epitaxy. Curr. Opin. Solid State Mater. Sci. 22, 229–242 (2018).

    Article 

    Google Scholar 

  • Aykol, M., Montoya, J. H. & Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 143, 9244–9259 (2021).

    Article 

    Google Scholar 

  • Kohlmann, H. Looking into the black box of solid‐state synthesis. Eur. J. Inorg. Chem. 2019, 4174–4180 (2019).

    Article 

    Google Scholar 

  • West, A. R. Solid State Chemistry and Its Applications (Wiley, 2022).

  • Stoch, L. & Waclawska, I. Phase transformations in amorphous solids. High Temp. Mater. Process. 13, 181–202 (1994).

    Article 

    Google Scholar 

  • Threlfall, T. Structural and thermodynamic explanations of Ostwald’s rule. Org. Process Res. Dev. 7, 1017–1027 (2003).

    Article 

    Google Scholar 

  • Fischer, D., Cancarevic, Z., Schön, J. C. & Jansen, M. Zur Synthese und Struktur von K3N. Z. Anorg. Allg. Chem. 630, 156–160 (2004).

    Article 

    Google Scholar 

  • Deringer, V. L. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).

    Article 

    Google Scholar 

  • Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Article 

    Google Scholar 

  • Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article 

    Google Scholar 

  • Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article 

    Google Scholar 

  • Schön, J. C. & Jansen, M. First step towards planning of syntheses in solid-state chemistry: determination of promising structure candidates by global optimization. Angew. Chem. Int. Ed. Engl. 35, 1286–1304 (1996).

    Article 

    Google Scholar 

  • Glass, C. W., Oganov, A. & Hansen, N. USPEX—evolutionary crystal structure prediction. Comput. Phys. Commun. 175, 713–720 (2006).

    Article 

    Google Scholar 

  • Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

    Article 

    Google Scholar 

  • Stevanović, V. Sampling polymorphs of ionic solids using random superlattices. Phys. Rev. Lett. 116, 075503 (2016).

    Article 

    Google Scholar 

  • Pottier, M. J. Mise en évidence d’un composé BiBO3 et de son polymorphisme par spectroscopie vibrationnelle. Bull. Soc. Chim. Belg. 83, 235–238 (1973).

    Article 

    Google Scholar 

  • Becker, P. & Fröhlich, R. Crystal growth and crystal structure of the metastable bismuth orthoborate BiBO3. Z. Naturforsch. B J. Chem. Sci. 59, 256–258 (2004).

    Article 

    Google Scholar 

  • Shinozaki, K., Hashimoto, K., Honma, T. & Komatsu, T. TEM analysis for crystal structure of metastable BiBO3 (II) phase formed in glass by laser-induced crystallization. J. Eur. Ceram. Soc. 35, 2541–2546 (2015).

    Article 

    Google Scholar 

  • Hirotsu, Y. et al. Nanoscale phase separation in metallic glasses studied by advanced electron microscopy techniques. Intermetallics 12, 1081–1088 (2004).

    Article 

    Google Scholar 

  • Aykol, M., Mekhrabov, A. O. & Akdeniz, M. V. Nano-scale phase separation in amorphous Fe–B alloys: atomic and cluster ordering. Acta Mater. 57, 171–181 (2009).

    Article 

    Google Scholar 

  • Huang, J. Y. & Zhu, Y. T. Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressures and temperatures. Chem. Mater. 14, 1873–1878 (2002).

    Article 

    Google Scholar 

  • Gladkaya, I. S., Kremkova, G. N. & Slesarev, V. N. Turbostratic boron nitride (BNt) under high pressures and temperatures. J. Less Common Met. 117, 241–245 (1986).

    Article 

    Google Scholar 

  • Sumiya, H., Iseki, T. & Onodera, A. High pressure synthesis of cubic boron nitride from amorphous state. Mater. Res. Bull. 18, 1203–1207 (1983).

    Article 

    Google Scholar 

  • Mangum, J. S. Selective brookite polymorph formation related to the amorphous precursor state in TiO2 thin films. J. Non Cryst. Solids 505, 109–114 (2019).

    Article 

    Google Scholar 

  • Stone, K. H. et al. Influence of amorphous structure on polymorphism in vanadia. APL Mater. 4, 076103 (2016).

    Article 

    Google Scholar 

  • Agirseven, O. et al. Crystallization of TiO2 polymorphs from RF-sputtered, amorphous thin-film precursors. AIP Adv. 10, 025109 (2020).

    Article 

    Google Scholar 

  • Hannemann, A., Schön, J. C., Jansen, M., Putz, H. & Lengauer, T. Modeling amorphous Si3B3N7: structure and elastic properties. Phys. Rev. B 70, 144201 (2004).

    Article 

    Google Scholar 

  • Neelamraju, S., Schön, J. C. & Jansen, M. Atomistic modeling of the low-temperature atom-beam deposition of magnesium fluoride. Inorg. Chem. 54, 782–791 (2014).

    Article 

    Google Scholar 

  • Mu, X. et al. Evolution of order in amorphous-to-crystalline phase transformation of MgF2. J. Appl. Crystallogr. 46, 1105–1116 (2013).

    Article 

    Google Scholar 

  • Sosso, G. C. et al. Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations. J. Phys. Chem. Lett. 4, 4241–4246 (2013).

    Article 

    Google Scholar 

  • Cui, X.-Y., Ringer, S. P., Wang, G. & Stachurski, Z. H. What should the density of amorphous solids be? J. Chem. Phys. 151, 194506 (2019).

    Article 

    Google Scholar 

  • Lindemann, F. A. The calculation of molecular vibration frequencies. Z. Phys. 11, 609 (1910).

    Google Scholar 

  • Schoenholz, S. S. & Cubuk, E. D. JAX, M.D.: a framework for differentiable physics. J. Stat. Mech. 2021, 124016 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Aykol, M., Wei, J. N., Batzner, S., Merchant, A. & Cubuk, E. D. Predicting properties of amorphous solids with graph network potentials. In Proc. 1st Workshop on the Synergy of Scientific and Machine Learning Modeling (ICML, 2023).

  • Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article 

    Google Scholar 

  • Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 

    Google Scholar 

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 

    Google Scholar 

  • Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31, e1902765 (2019).

    Article 

    Google Scholar 

  • Artrith, N. & Urban, A. An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comput. Mater. Sci. 114, 135–150 (2016).

    Article 

    Google Scholar 

  • Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article 

    Google Scholar 

  • Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article 

    Google Scholar 

  • Riebesell, J. et al. MatBench Discovery—a framework to evaluate machine learning crystal stability prediction. Preprint at (2023).

  • Putz, H., Schön, J. C. & Jansen, M. Strukturvorhersage von Kristallen aus binären Edelgasgemischen mit globalen und lokalen Optimierungsmethoden. Ber. Bunsenges. Phys. Chem. 99, 1148–1153 (1995).

    Article 

    Google Scholar 

  • Freeman, C. M., Newsam, J. M., Levine, S. M. & Catlow, C. R. A. Inorganic crystal structure prediction using simplified potentials and experimental unit cells: application to the polymorphs of titanium dioxide. J. Mater. Chem. 3, 531–535 (1993).

    Article 

    Google Scholar 

  • Reinhardt, A., Pickard, C. J. & Cheng, B. Predicting the phase diagram of titanium dioxide with random search and pattern recognition. Phys. Chem. Chem. Phys. 22, 12697–12705 (2020).

    Article 

    Google Scholar 

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 

    Google Scholar 

  • a2c supplementary data. Zenodo (2024).

  • JAX, M.D. Zenodo (2024).

  • link